Skip to main content
Top

2020 | OriginalPaper | Chapter

6. AlGaN-Based Multiple-Quantum-Well Materials and UV LEDs

Authors : Jinmin Li, Junxi Wang, Xiaoyan Yi, Zhiqiang Liu, Tongbo Wei, Jianchang Yan, Bin Xue

Published in: III-Nitrides Light Emitting Diodes: Technology and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultraviolet (UV) light, which is shorter than the wavelength of visible light, has important applications in the field of sterilization and disinfection. Among them, UV-C light (250–280 nm) can destroy nucleic acids, the genetic material of microorganisms, through photochemical action.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Hirayama, N. Noguchi, S. Fujikawa et al., 222–282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template. Proc. SPIE 7216, 721621 (2009) H. Hirayama, N. Noguchi, S. Fujikawa et al., 222–282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template. Proc. SPIE 7216, 721621 (2009)
2.
go back to reference H. Morkoç, Handbook of Nitride semiconductors and devices: materials properties, physics and growth (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008) H. Morkoç, Handbook of Nitride semiconductors and devices: materials properties, physics and growth (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008)
3.
go back to reference O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31(20), 2653–2710 (1998)ADS O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31(20), 2653–2710 (1998)ADS
4.
go back to reference O.H. Nam, M.D. Bremser, T.S. Zheleva et al., Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71(18), 2638–2640 (1997)ADS O.H. Nam, M.D. Bremser, T.S. Zheleva et al., Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71(18), 2638–2640 (1997)ADS
5.
go back to reference M. Stutzmann, O. Ambacher, M. Eickhoff et al., Playing with polarity. Physica Status Solidi(b) 228(2), 505–512 (2001) M. Stutzmann, O. Ambacher, M. Eickhoff et al., Playing with polarity. Physica Status Solidi(b) 228(2), 505–512 (2001)
6.
go back to reference T.G. Mihopoulos, V. Gupta, K.F. Jensen, A reaction-transport model for AlGaN MOVPE growth. J. Cryst. Growth 195(1–4), 733–739 (1998)ADS T.G. Mihopoulos, V. Gupta, K.F. Jensen, A reaction-transport model for AlGaN MOVPE growth. J. Cryst. Growth 195(1–4), 733–739 (1998)ADS
7.
go back to reference K. Harafuji, Transport of gas-phase species stored in stagnant volumes under a GaN metalorganic vapor phase epitaxy horizontal reactor. Jpn. J. Appl. Phys. 40(11), 6263–6283 (2001)ADS K. Harafuji, Transport of gas-phase species stored in stagnant volumes under a GaN metalorganic vapor phase epitaxy horizontal reactor. Jpn. J. Appl. Phys. 40(11), 6263–6283 (2001)ADS
8.
go back to reference B. Heying, X.H. Wu, S. Keller et al., Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68(5), 643–645 (1996)ADS B. Heying, X.H. Wu, S. Keller et al., Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68(5), 643–645 (1996)ADS
9.
go back to reference S.R. Lee, A.F. Wright, M.H. Crawford et al., The band-gap bowing of AlxGa1−xN alloys. Appl. Phys. Lett. 74(22), 3344–3346 (1999)ADS S.R. Lee, A.F. Wright, M.H. Crawford et al., The band-gap bowing of AlxGa1−xN alloys. Appl. Phys. Lett. 74(22), 3344–3346 (1999)ADS
10.
go back to reference O. Ambacher, J. Majewski, C. Miskys et al., Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter 14(13), 3399–3434 (2002)ADS O. Ambacher, J. Majewski, C. Miskys et al., Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys.: Condens. Matter 14(13), 3399–3434 (2002)ADS
11.
go back to reference A. Khan, K. Balakrishnan, T. Katona et al., Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2(2), 77–84 (2008)ADS A. Khan, K. Balakrishnan, T. Katona et al., Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2(2), 77–84 (2008)ADS
12.
go back to reference C.J. Sun, P. Kung, A. Saxler et al., A crystallographic model of (001) aluminum nitride epitaxial thin film growth on (001) sapphire substrate. J. Appl. Phys. 75(8), 3964–3967 (1994)ADS C.J. Sun, P. Kung, A. Saxler et al., A crystallographic model of (001) aluminum nitride epitaxial thin film growth on (001) sapphire substrate. J. Appl. Phys. 75(8), 3964–3967 (1994)ADS
13.
go back to reference S. Guha, N.A. Bojarczuk, Ultraviolet and violet GaN light emitting diodes on silicon. Appl. Phys. Lett. 72(4), 415–417 (1998)ADS S. Guha, N.A. Bojarczuk, Ultraviolet and violet GaN light emitting diodes on silicon. Appl. Phys. Lett. 72(4), 415–417 (1998)ADS
14.
go back to reference N. Ikeda, Y. Niiyama, H. Kambayashi et al., GaN power transistors on Si substrates for switching applications. Proc. IEEE 98(7), 1151–1161 (2010) N. Ikeda, Y. Niiyama, H. Kambayashi et al., GaN power transistors on Si substrates for switching applications. Proc. IEEE 98(7), 1151–1161 (2010)
15.
go back to reference T. Mino, H. Hirayama, T. Takano et al., Development of 260 nm band deep-ultraviolet light emitting diodes on Si substrates. Proc. SPIE 8625, 86251Q (2013) T. Mino, H. Hirayama, T. Takano et al., Development of 260 nm band deep-ultraviolet light emitting diodes on Si substrates. Proc. SPIE 8625, 86251Q (2013)
16.
go back to reference Y. Zhang, S. Gautier, C.-Y. Cho et al., Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111). Appl. Phys. Lett. 102(1), 011106 (2013)ADS Y. Zhang, S. Gautier, C.-Y. Cho et al., Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111). Appl. Phys. Lett. 102(1), 011106 (2013)ADS
18.
go back to reference M.A. Khan, J.N. Kuznia, D.T. Olson et al., GaN/AlN digital alloy short-period superlattices by switched atomic layer metal organic chemical vapor deposition. Appl. Phys. Lett. 63(25), 3470–3472 (1993)ADS M.A. Khan, J.N. Kuznia, D.T. Olson et al., GaN/AlN digital alloy short-period superlattices by switched atomic layer metal organic chemical vapor deposition. Appl. Phys. Lett. 63(25), 3470–3472 (1993)ADS
19.
go back to reference M.A. Khan, V. Adivarahan, J.P. Zhang et al., Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells. Jpn. J. Appl. Phys. 40(12A), 1308–1310 (2001)ADS M.A. Khan, V. Adivarahan, J.P. Zhang et al., Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells. Jpn. J. Appl. Phys. 40(12A), 1308–1310 (2001)ADS
20.
go back to reference J.P. Zhang, E. Kuokstis, Q. Fareed et al., Pulsed atomic layer epitaxy of quaternary AlInGaN layers for ultraviolet light emitters. Physica Status Solidi a-Appl. Res. 188(1), 95–99 (2001)ADS J.P. Zhang, E. Kuokstis, Q. Fareed et al., Pulsed atomic layer epitaxy of quaternary AlInGaN layers for ultraviolet light emitters. Physica Status Solidi a-Appl. Res. 188(1), 95–99 (2001)ADS
21.
go back to reference J.P. Zhang, M.A. Khan, W.H. Sun et al., Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 81(23), 4392–4394 (2002)ADS J.P. Zhang, M.A. Khan, W.H. Sun et al., Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 81(23), 4392–4394 (2002)ADS
22.
go back to reference H.M. Wang, J.P. Zhang, C.Q. Chen et al., AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81(4), 604–606 (2002)ADS H.M. Wang, J.P. Zhang, C.Q. Chen et al., AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81(4), 604–606 (2002)ADS
23.
go back to reference J.P. Zhang, H.M. Wang, M.E. Gaevski et al., Crack-free thick AlGaN grown on sapphire using AlN AlGaN superlattices for strain management. Appl. Phys. Lett. 80(19), 3542–3544 (2002)ADS J.P. Zhang, H.M. Wang, M.E. Gaevski et al., Crack-free thick AlGaN grown on sapphire using AlN AlGaN superlattices for strain management. Appl. Phys. Lett. 80(19), 3542–3544 (2002)ADS
24.
go back to reference V. Adivarahan, W.H. Sun, A. Chitnis et al., 250nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85(12), 2175–2177 (2004)ADS V. Adivarahan, W.H. Sun, A. Chitnis et al., 250nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85(12), 2175–2177 (2004)ADS
25.
go back to reference V. Adivarahan, J. Zhang, A. Chitnis et al., Sub-milliwatt power III-N light emitting diodes at 285 nm. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L435-L436 (2002) V. Adivarahan, J. Zhang, A. Chitnis et al., Sub-milliwatt power III-N light emitting diodes at 285 nm. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L435-L436 (2002)
26.
go back to reference A. Chitnis, J.P. Zhang, V. Adivarahan et al., 324 nm light emitting diodes with milliwatt powers. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L450–L451 (2002) A. Chitnis, J.P. Zhang, V. Adivarahan et al., 324 nm light emitting diodes with milliwatt powers. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L450–L451 (2002)
27.
go back to reference W.H. Sun, J.P. Zhang, V. Adivarahan et al., AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW. Appl. Phys. Lett. 85(4), 531–533 (2004) W.H. Sun, J.P. Zhang, V. Adivarahan et al., AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW. Appl. Phys. Lett. 85(4), 531–533 (2004)
28.
go back to reference R.G. Banal, M. Funato, Y. Kawakami, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92(24), 241905 (2008)ADS R.G. Banal, M. Funato, Y. Kawakami, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92(24), 241905 (2008)ADS
29.
go back to reference R.G. Banal, M. Funato, Y. Kawakami, Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Physica Status Solidi (c) 7(7–8), 2111–2114 (2010)ADS R.G. Banal, M. Funato, Y. Kawakami, Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Physica Status Solidi (c) 7(7–8), 2111–2114 (2010)ADS
30.
go back to reference M. Imura, K. Nakano, N. Fujimoto et al., High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J. Appl. Phys. 45(11), 8639–8643 (2006)ADS M. Imura, K. Nakano, N. Fujimoto et al., High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J. Appl. Phys. 45(11), 8639–8643 (2006)ADS
31.
go back to reference M. Imura, N. Fujimoto, N. Okada et al., Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. J. Cryst. Growth 300(1), 136–140 (2007)ADS M. Imura, N. Fujimoto, N. Okada et al., Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. J. Cryst. Growth 300(1), 136–140 (2007)ADS
32.
go back to reference H. Hirayama, T. Yatabe, N. Noguchi et al., 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 91(7), 071901 (2007)ADS H. Hirayama, T. Yatabe, N. Noguchi et al., 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 91(7), 071901 (2007)ADS
33.
go back to reference H. Hirayama, T. Yatabe, N. Noguchi et al., 226-273 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire. Physica Status Solidi (c) 5(9), 2969–2971 (2008)ADS H. Hirayama, T. Yatabe, N. Noguchi et al., 226-273 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire. Physica Status Solidi (c) 5(9), 2969–2971 (2008)ADS
34.
go back to reference H. Hirayama, S. Fujikawa, N. Noguchi et al., 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Physica Status Solidi (a) 206(6), 1176–1182 (2009)ADS H. Hirayama, S. Fujikawa, N. Noguchi et al., 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Physica Status Solidi (a) 206(6), 1176–1182 (2009)ADS
35.
go back to reference Z. Chen, R.S. Qhalid Fareed, M. Gaevski et al., Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl. Phys. Lett. 89(8), 081905 (2006)ADS Z. Chen, R.S. Qhalid Fareed, M. Gaevski et al., Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl. Phys. Lett. 89(8), 081905 (2006)ADS
36.
go back to reference M. Shatalov, M. Gaevski, V. Adivarahan et al., Room-temperature stimulated emission from AlN at 214 nm. Jpn. J. Appl. Phys. 45(49), L1286–L1288 (2006)ADS M. Shatalov, M. Gaevski, V. Adivarahan et al., Room-temperature stimulated emission from AlN at 214 nm. Jpn. J. Appl. Phys. 45(49), L1286–L1288 (2006)ADS
37.
go back to reference V. Adivarahan, Q. Fareed, M. Islam et al., Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn. J. Appl. Phys. 46(36), L877–L879 (2007) V. Adivarahan, Q. Fareed, M. Islam et al., Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn. J. Appl. Phys. 46(36), L877–L879 (2007)
38.
go back to reference S. Hwang, D. Morgan, A. Kesler et al., 276 nm substrate-free flip-chip AlGaN light-emitting diodes. Appl. Phys. Express 4(3), 032102 (2011)ADS S. Hwang, D. Morgan, A. Kesler et al., 276 nm substrate-free flip-chip AlGaN light-emitting diodes. Appl. Phys. Express 4(3), 032102 (2011)ADS
39.
go back to reference H. Hirayama, J. Norimatsu, N. Noguchi et al., Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Physica Status Solidi (c) 6(S2), S474–S477 (2009) H. Hirayama, J. Norimatsu, N. Noguchi et al., Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Physica Status Solidi (c) 6(S2), S474–S477 (2009)
40.
go back to reference R. Jain, W. Sun, J. Yang et al., Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93(5), 051113 (2008)ADS R. Jain, W. Sun, J. Yang et al., Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93(5), 051113 (2008)ADS
41.
go back to reference M.S. Shur, R. Gaska, Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices 57(1), 12–25 (2010)ADS M.S. Shur, R. Gaska, Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices 57(1), 12–25 (2010)ADS
42.
go back to reference M. Imura, K. Nakano, T. Kitano et al., Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 89(22), 221901 (2006)ADS M. Imura, K. Nakano, T. Kitano et al., Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 89(22), 221901 (2006)ADS
43.
go back to reference M. Imura, K. Nakano, G. Narita et al., Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Cryst. Growth 298, 257–260 (2007)ADS M. Imura, K. Nakano, G. Narita et al., Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Cryst. Growth 298, 257–260 (2007)ADS
44.
go back to reference M. Kim, T. Fujita, S. Fukahori et al., AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl. Phys. Express 4(9), 092102 (2011)ADS M. Kim, T. Fujita, S. Fukahori et al., AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl. Phys. Express 4(9), 092102 (2011)ADS
45.
go back to reference K. Iida, H. Watanabe, K. Takeda et al., High-efficiency AlGaN based UV emitters grown on high-crystalline-quality AlGaN using grooved AlN layer on sapphire substrate. Physica Status Solidi (a) 204(6), 2000–2004 (2007)ADS K. Iida, H. Watanabe, K. Takeda et al., High-efficiency AlGaN based UV emitters grown on high-crystalline-quality AlGaN using grooved AlN layer on sapphire substrate. Physica Status Solidi (a) 204(6), 2000–2004 (2007)ADS
46.
go back to reference H. Tsuzuki, F. Mori, K. Takeda et al., Novel UV devices on high-quality AlGaN using grooved underlying layer. J. Cryst. Growth 311(10), 2860–2863 (2009)ADS H. Tsuzuki, F. Mori, K. Takeda et al., Novel UV devices on high-quality AlGaN using grooved underlying layer. J. Cryst. Growth 311(10), 2860–2863 (2009)ADS
47.
go back to reference R.T. Bondokov, S.G. Mueller, K.E. Morgan et al., Large-area AlN substrates for electronic applications: An industrial perspective. J. Cryst. Growth 310(17), 4020–4026 (2008)ADS R.T. Bondokov, S.G. Mueller, K.E. Morgan et al., Large-area AlN substrates for electronic applications: An industrial perspective. J. Cryst. Growth 310(17), 4020–4026 (2008)ADS
48.
go back to reference J.R. Grandusky, J. Chen, M.C. Mendrick et al., Improved efficiency high power 260 nm pseudomorphic ultraviolet light emitting diodes, in Lester Eastman Conference on High Performance Devices (LEC), pp. 1–2 (2012) J.R. Grandusky, J. Chen, M.C. Mendrick et al., Improved efficiency high power 260 nm pseudomorphic ultraviolet light emitting diodes, in Lester Eastman Conference on High Performance Devices (LEC), pp. 1–2 (2012)
49.
go back to reference J.R. Grandusky, J. Chen, S.R. Gibb et al., 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6(3), 032101 (2013)ADS J.R. Grandusky, J. Chen, S.R. Gibb et al., 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6(3), 032101 (2013)ADS
50.
go back to reference T. Kinoshita, K. Hironaka, T. Obata et al., Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 5(12), 122101 (2012)ADS T. Kinoshita, K. Hironaka, T. Obata et al., Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 5(12), 122101 (2012)ADS
51.
go back to reference T. Kinoshita, T. Obata, T. Nagashima et al., Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 6(9), 092103 (2013)ADS T. Kinoshita, T. Obata, T. Nagashima et al., Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 6(9), 092103 (2013)ADS
52.
go back to reference B. Pantha, GaN and ZnO-based Materials and Devices (Springer, Berlin,Heidelberg, 2012) B. Pantha, GaN and ZnO-based Materials and Devices (Springer, Berlin,Heidelberg, 2012)
53.
go back to reference J. Li, K.B. Nam, J.Y. Lin et al., Optical and electrical properties of Al-rich AlGaN alloys. Appl. Phys. Lett. 79(20), 3245–3247 (2001)ADS J. Li, K.B. Nam, J.Y. Lin et al., Optical and electrical properties of Al-rich AlGaN alloys. Appl. Phys. Lett. 79(20), 3245–3247 (2001)ADS
54.
go back to reference J.P. Zhang, H.M. Wang, W.H. Sun et al., High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003)ADS J.P. Zhang, H.M. Wang, W.H. Sun et al., High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003)ADS
55.
go back to reference P. Cantu, S. Keller, U.K. Mishra et al., Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl. Phys. Lett. 82(21), 3683–3685 (2003) P. Cantu, S. Keller, U.K. Mishra et al., Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl. Phys. Lett. 82(21), 3683–3685 (2003)
56.
go back to reference M.L. Nakarmi, K.H. Kim, K. Zhu et al., Transport properties of highly conductive n-type Al-rich AlxGa1−xN(x ≥ 0.7). Appl. Phys. Lett. 85(17), 3769–3771 (2004) M.L. Nakarmi, K.H. Kim, K. Zhu et al., Transport properties of highly conductive n-type Al-rich AlxGa1−xN(x ≥ 0.7). Appl. Phys. Lett. 85(17), 3769–3771 (2004)
57.
go back to reference K. Zhu, M.L. Nakarmi, K.H. Kim et al., Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl. Phys. Lett. 85(20), 4669–4671 (2004) K. Zhu, M.L. Nakarmi, K.H. Kim et al., Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl. Phys. Lett. 85(20), 4669–4671 (2004)
58.
go back to reference Y. Taniyasu, M. Kasu, T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100 cm2 V−1 s−1). Appl. Phys. Lett. 85(20), 4672–4674 (2004)ADS Y. Taniyasu, M. Kasu, T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100 cm2 V−1 s−1). Appl. Phys. Lett. 85(20), 4672–4674 (2004)ADS
59.
go back to reference M. Kneissl, T. Kolbe, C. Chua et al., Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1), 014036 (2011)ADS M. Kneissl, T. Kolbe, C. Chua et al., Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1), 014036 (2011)ADS
60.
go back to reference L. Hsu, W. Walukiewicz, Theoretical transport studies of p-type GaN/AlGaN modulation-doped heterostructures. Appl. Phys. Lett. 74(17), 2405–2407 (1999)ADS L. Hsu, W. Walukiewicz, Theoretical transport studies of p-type GaN/AlGaN modulation-doped heterostructures. Appl. Phys. Lett. 74(17), 2405–2407 (1999)ADS
61.
go back to reference P. Kozodoy, M. Hansen, S.P. DenBaars et al., Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett. 74(24), 3681–3683 P. Kozodoy, M. Hansen, S.P. DenBaars et al., Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett. 74(24), 3681–3683
62.
go back to reference A. Saxler, W.C. Mitchel, P. Kung et al., Aluminum gallium nitride short-period superlattices doped with magnesium. Appl. Phys. Lett. 74(14), 2023–2025 (1999)ADS A. Saxler, W.C. Mitchel, P. Kung et al., Aluminum gallium nitride short-period superlattices doped with magnesium. Appl. Phys. Lett. 74(14), 2023–2025 (1999)ADS
63.
go back to reference P. Kozodoy, Y.P. Smorchkova, M. Hansen et al., Polarization-enhanced Mg doping of AlGaN/GaN superlattices. Appl. Phys. Lett. 75(16), 2444–2446 (1999)ADS P. Kozodoy, Y.P. Smorchkova, M. Hansen et al., Polarization-enhanced Mg doping of AlGaN/GaN superlattices. Appl. Phys. Lett. 75(16), 2444–2446 (1999)ADS
64.
go back to reference M.L. Nakarmi, K.H. Kim, J. Li et al., Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82(18), 3041–3043 (2003)ADS M.L. Nakarmi, K.H. Kim, J. Li et al., Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82(18), 3041–3043 (2003)ADS
65.
go back to reference J. Simon, V. Protasenko, C. Lian et al., Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010)ADS J. Simon, V. Protasenko, C. Lian et al., Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010)ADS
66.
go back to reference L. Zhang, K. Ding, J.C. Yan et al., Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl. Phys. Lett. 97(6), 062103 (2010)ADS L. Zhang, K. Ding, J.C. Yan et al., Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl. Phys. Lett. 97(6), 062103 (2010)ADS
67.
go back to reference A. Fujioka, T. Misaki, T. Murayama et al., Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3(4), 041001 (2010)ADS A. Fujioka, T. Misaki, T. Murayama et al., Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3(4), 041001 (2010)ADS
68.
go back to reference S. Sumiya, Y. Zhu, J. Zhang et al., AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates. Jpn. J. Appl. Phys. 47(1), 43–46 (2008)ADS S. Sumiya, Y. Zhu, J. Zhang et al., AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates. Jpn. J. Appl. Phys. 47(1), 43–46 (2008)ADS
69.
go back to reference H. Hirayama, Y. Tsukada, T. Maeda et al., Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3(3), 031002 (2010)ADS H. Hirayama, Y. Tsukada, T. Maeda et al., Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3(3), 031002 (2010)ADS
70.
go back to reference L. Zhou, J.E. Epler, M.R. Krames et al., Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 89(24), 241113 (2006)ADS L. Zhou, J.E. Epler, M.R. Krames et al., Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 89(24), 241113 (2006)ADS
71.
go back to reference V. Adivarahan, A. Heidari, B. Zhang et al., Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region. Appl. Phys. Express 2(9), 092102 (2009)ADS V. Adivarahan, A. Heidari, B. Zhang et al., Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region. Appl. Phys. Express 2(9), 092102 (2009)ADS
72.
go back to reference H.Y. Ryu, I.G. Choi, H.S. Choi et al., Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6(6), 062101 (2013)ADS H.Y. Ryu, I.G. Choi, H.S. Choi et al., Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6(6), 062101 (2013)ADS
73.
go back to reference P. Dong, Study on Efficiency Improvement of AlGaN-based UV LED, University of Chinese Academy of Sciences, Ph.D. thesis (in Chinese) (2014) P. Dong, Study on Efficiency Improvement of AlGaN-based UV LED, University of Chinese Academy of Sciences, Ph.D. thesis (in Chinese) (2014)
Metadata
Title
AlGaN-Based Multiple-Quantum-Well Materials and UV LEDs
Authors
Jinmin Li
Junxi Wang
Xiaoyan Yi
Zhiqiang Liu
Tongbo Wei
Jianchang Yan
Bin Xue
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7949-3_6

Premium Partners