Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Alginate Application for Heart and Cardiovascular Diseases

Authors : Zhengfan Xu, Mai T. Lam

Published in: Alginates and Their Biomedical Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alginate biomaterial has been extensively investigated and used for many biomedical applications due to its biocompatibility, low toxicity, relatively low cost, and ease of use. Its use toward cardiovascular application is no exception. Alginate is approved by the Food and Drug Administration (FDA) for various medical applications, such as a thickening, gel forming, and as a stabilizing agent for dental impression materials, wound dressings, and more. In this chapter, we describe the versatile biomedical applications of alginate, from its use as supporting extracellular matrices (ECM) in patients after acute myocardial infarction (MI), to its employment as a vehicle for stem cell delivery, to controlled delivery of multiple combinations of bioactive molecules. We also cover the application of alginate in creating solutions for treatment of other cardiovascular diseases by capitalizing on the natural properties of alginate to improve creation of heart valves, blood vessels, and drug and stem cell delivery vehicles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ueno M, Oda T (2014) Chapter six – biological activities of alginate. Adv Food Nutr Res 72:95–112CrossRef Ueno M, Oda T (2014) Chapter six – biological activities of alginate. Adv Food Nutr Res 72:95–112CrossRef
2.
go back to reference Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465CrossRef Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465CrossRef
3.
go back to reference Senni K et al (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681CrossRef Senni K et al (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681CrossRef
4.
go back to reference Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012) Chapter 9 alginates as biomaterials in tissue engineering. Carbohydr Chem 37:227–258CrossRef Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012) Chapter 9 alginates as biomaterials in tissue engineering. Carbohydr Chem 37:227–258CrossRef
5.
go back to reference Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029CrossRef Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029CrossRef
6.
go back to reference Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923CrossRef Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923CrossRef
7.
go back to reference Rabbany SY et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408CrossRef Rabbany SY et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408CrossRef
8.
go back to reference Murakami K et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef Murakami K et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef
9.
go back to reference Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909CrossRef Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909CrossRef
10.
go back to reference Martin GSJS, Norman S (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101:2981–2988CrossRef Martin GSJS, Norman S (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101:2981–2988CrossRef
11.
go back to reference Westman PC et al (2016) Inflammation and remodeling after myocardial infarction. J Am Coll Cardiol 67:2050–2060CrossRef Westman PC et al (2016) Inflammation and remodeling after myocardial infarction. J Am Coll Cardiol 67:2050–2060CrossRef
12.
go back to reference Ruvinov E, Sapir Y, Cohen S (2012) Cardiac tissue engineering: principles, materials, and applications. Morgan & Claypool Publishers, San Rafael Ruvinov E, Sapir Y, Cohen S (2012) Cardiac tissue engineering: principles, materials, and applications. Morgan & Claypool Publishers, San Rafael
13.
go back to reference Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR (2011) Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 13:245–267CrossRef Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR (2011) Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 13:245–267CrossRef
14.
go back to reference Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering: state of the art. Circ Res 114:354–367CrossRef Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering: state of the art. Circ Res 114:354–367CrossRef
15.
go back to reference Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34:229–241CrossRef Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34:229–241CrossRef
16.
go back to reference Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511CrossRef Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511CrossRef
18.
go back to reference Burdick JA, Mauck RL, Gorman JH, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5:174–176CrossRef Burdick JA, Mauck RL, Gorman JH, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5:174–176CrossRef
19.
go back to reference Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913CrossRef Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913CrossRef
20.
go back to reference Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629CrossRef Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629CrossRef
21.
go back to reference Yu J, Christman KL (2009) Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 137:180–187CrossRef Yu J, Christman KL (2009) Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 137:180–187CrossRef
22.
go back to reference Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756CrossRef Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756CrossRef
23.
go back to reference Sabbah HN et al (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1:252–258CrossRef Sabbah HN et al (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1:252–258CrossRef
24.
go back to reference Lee LC et al (2013) Algisyl-LVR™ with coronary artery by-pass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 168:2022–2028CrossRef Lee LC et al (2013) Algisyl-LVR™ with coronary artery by-pass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 168:2022–2028CrossRef
25.
go back to reference Lee RJ et al (2015) The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol 199:18–24CrossRef Lee RJ et al (2015) The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol 199:18–24CrossRef
26.
go back to reference Randomized A Controlled study to evaluate algisyl-LVR™ as a method of left ventricular augmentation for heart failure (AUGMENT-HF). http://ClinicalTrials.gov, identifier NCT01311791 Randomized A Controlled study to evaluate algisyl-LVR™ as a method of left ventricular augmentation for heart failure (AUGMENT-HF). http://​ClinicalTrials.​gov, identifier NCT01311791
27.
go back to reference Rocca et al (2016) An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. Int J Cardiol 220:149–154CrossRef Rocca et al (2016) An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. Int J Cardiol 220:149–154CrossRef
28.
go back to reference Bhana B et al (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105:1148–1160 Bhana B et al (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105:1148–1160
29.
go back to reference Engler AJ et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802CrossRef Engler AJ et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802CrossRef
30.
go back to reference Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487CrossRef Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487CrossRef
31.
go back to reference Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95:1261–1269CrossRef Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95:1261–1269CrossRef
32.
go back to reference Singelyn JM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59:751–763CrossRef Singelyn JM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59:751–763CrossRef
33.
go back to reference Tsur-Gang O et al (2009) The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195CrossRef Tsur-Gang O et al (2009) The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195CrossRef
34.
go back to reference Landa N (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117:1388–1396CrossRef Landa N (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117:1388–1396CrossRef
35.
go back to reference Leor J et al (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54:1014–1023CrossRef Leor J et al (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54:1014–1023CrossRef
37.
go back to reference Frey N et al (2014) Intracoronary delivery of injectable bioabsorbable scaffold (ik-5001) to treat left ventricular remodeling after st-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv 7:806–812CrossRef Frey N et al (2014) Intracoronary delivery of injectable bioabsorbable scaffold (ik-5001) to treat left ventricular remodeling after st-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv 7:806–812CrossRef
38.
go back to reference IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction (PRESERVATION 1). http://ClinicalTrials.gov, identifier NCT01226563 IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction (PRESERVATION 1). http://​ClinicalTrials.​gov, identifier NCT01226563
39.
go back to reference Rao SV et al (2016) Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J Am Coll Cardiol 68:715–723CrossRef Rao SV et al (2016) Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J Am Coll Cardiol 68:715–723CrossRef
40.
go back to reference Segers VF, Lee RT (2011) Biomaterials to enhance stem cell function in the heart. Circ Res 109:910–922CrossRef Segers VF, Lee RT (2011) Biomaterials to enhance stem cell function in the heart. Circ Res 109:910–922CrossRef
41.
go back to reference Templin C, Luscher TF, Landmesser U (2011) Cell-based cardiovascular repair and regeneration in acute myo-cardial infarction and chronic ischemic cardiomyopathy – current status and future developments. Int J Dev Biol 55:407–417CrossRef Templin C, Luscher TF, Landmesser U (2011) Cell-based cardiovascular repair and regeneration in acute myo-cardial infarction and chronic ischemic cardiomyopathy – current status and future developments. Int J Dev Biol 55:407–417CrossRef
42.
go back to reference Singelyn JM, Christman KL (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486CrossRef Singelyn JM, Christman KL (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486CrossRef
43.
go back to reference Roche ET et al (2014) Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35:6850–6858CrossRef Roche ET et al (2014) Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35:6850–6858CrossRef
44.
go back to reference Levit RD (2013) Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2:e000367CrossRef Levit RD (2013) Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2:e000367CrossRef
45.
go back to reference Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18:583–590CrossRef Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18:583–590CrossRef
46.
go back to reference Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23:4087–4094CrossRef Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23:4087–4094CrossRef
47.
go back to reference Leor J et al (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(Suppl. II):56–61 Leor J et al (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(Suppl. II):56–61
48.
go back to reference Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312CrossRef Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312CrossRef
49.
go back to reference Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199:174–180CrossRef Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199:174–180CrossRef
50.
go back to reference Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162CrossRef Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162CrossRef
51.
go back to reference Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847CrossRef Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847CrossRef
52.
go back to reference Cardin AD, Weintraub HJ (1989) Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9:21–32CrossRef Cardin AD, Weintraub HJ (1989) Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9:21–32CrossRef
53.
go back to reference Dvir T et al (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720–725CrossRef Dvir T et al (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720–725CrossRef
54.
go back to reference Sapir Y, Polyak B, Cohen S (2014) Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology 25:014009CrossRef Sapir Y, Polyak B, Cohen S (2014) Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology 25:014009CrossRef
55.
go back to reference Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170CrossRef Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170CrossRef
56.
go back to reference Maltais S, Tremblay JP (2010) The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 3:652–662CrossRef Maltais S, Tremblay JP (2010) The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 3:652–662CrossRef
57.
go back to reference Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRef Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRef
58.
go back to reference Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289CrossRef Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289CrossRef
59.
go back to reference Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26:1166–1173CrossRef Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26:1166–1173CrossRef
60.
go back to reference Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41:283–287CrossRef Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41:283–287CrossRef
61.
go back to reference Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376CrossRef Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376CrossRef
62.
go back to reference Hao X et al (2007) Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185CrossRef Hao X et al (2007) Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185CrossRef
63.
go back to reference Banquet S et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124:1059–1069CrossRef Banquet S et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124:1059–1069CrossRef
64.
go back to reference Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32:565–578CrossRef Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32:565–578CrossRef
65.
go back to reference Conti E et al (2004) Insulin like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265CrossRef Conti E et al (2004) Insulin like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265CrossRef
66.
go back to reference Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–1519CrossRef Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–1519CrossRef
67.
go back to reference Hausenloy DJ, Yellon DM (2009) Cardioprotective growth factors. Cardiovasc Res 83:179–194CrossRef Hausenloy DJ, Yellon DM (2009) Cardioprotective growth factors. Cardiovasc Res 83:179–194CrossRef
68.
go back to reference Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31:4573–4582CrossRef Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31:4573–4582CrossRef
69.
go back to reference Dvir T et al (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 106:14990–14995CrossRef Dvir T et al (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 106:14990–14995CrossRef
70.
go back to reference Rodness J et al (2016) VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomaterialia. pii: S1742-7061(16)30472-X. doi: 10.1016/j.actbio.2016.09.009. [Epub ahead of print] Rodness J et al (2016) VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomaterialia. pii: S1742-7061(16)30472-X. doi: 10.1016/j.actbio.2016.09.009. [Epub ahead of print]
71.
go back to reference Henri O et al (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133:1484–1497CrossRef Henri O et al (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133:1484–1497CrossRef
72.
go back to reference Kang HK et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs Produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24:1644–1654CrossRef Kang HK et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs Produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24:1644–1654CrossRef
73.
go back to reference Bin D, Hockaday AL, Kang KH, Butcher JT (2013) 3d bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264 Bin D, Hockaday AL, Kang KH, Butcher JT (2013) 3d bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264
74.
go back to reference Hockaday LA et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005CrossRef Hockaday LA et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005CrossRef
75.
go back to reference Liu Y, Sakai S, Taya M (2016) Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules. Heliyon 2:e00067CrossRef Liu Y, Sakai S, Taya M (2016) Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules. Heliyon 2:e00067CrossRef
76.
go back to reference Kinoshita K et al (2016) Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnology Journal. doi: 10.1002/biot.201600083. [Epub ahead of print] Kinoshita K et al (2016) Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnology Journal. doi: 10.1002/biot.201600083. [Epub ahead of print]
77.
go back to reference Jia W et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68CrossRef Jia W et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68CrossRef
78.
go back to reference Kevadiya BD, Joshi GV, Bajaj HC (2010) Layered bionanocomposites as carrier for procainamide. Int J Pharm 388:280–286CrossRef Kevadiya BD, Joshi GV, Bajaj HC (2010) Layered bionanocomposites as carrier for procainamide. Int J Pharm 388:280–286CrossRef
79.
go back to reference Beckerman Z et al (2014) A novel amiodarone-eluting biological glue for reducing post-operative atrial fibrillation: first animal trial. J Cardiovasc Pharmacol Ther 19:481–491CrossRef Beckerman Z et al (2014) A novel amiodarone-eluting biological glue for reducing post-operative atrial fibrillation: first animal trial. J Cardiovasc Pharmacol Ther 19:481–491CrossRef
81.
go back to reference Lovich MA, Wei A, Maslov MY, Wu PI, Edelman ER (2011) Local epicardial inotropic drug delivery allows targeted pharmacologic intervention with preservation of myocardial loading conditions. J Pharm Sci 100(11):4993–5006CrossRef Lovich MA, Wei A, Maslov MY, Wu PI, Edelman ER (2011) Local epicardial inotropic drug delivery allows targeted pharmacologic intervention with preservation of myocardial loading conditions. J Pharm Sci 100(11):4993–5006CrossRef
82.
go back to reference Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA (2013) High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release 171(2):201–207CrossRef Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA (2013) High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release 171(2):201–207CrossRef
83.
go back to reference Maslov MY et al (2014) Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release 194:257–265CrossRef Maslov MY et al (2014) Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release 194:257–265CrossRef
84.
go back to reference Liu TC, Ismail S, Brennan O, Hastings C, Duffy GP (2013) Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin mediated toxicity. J Tissue Eng Regen Med 7:302–311CrossRef Liu TC, Ismail S, Brennan O, Hastings C, Duffy GP (2013) Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin mediated toxicity. J Tissue Eng Regen Med 7:302–311CrossRef
85.
go back to reference Terakado S et al (2012) Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin Exp Hypertens 34(2):99–106CrossRef Terakado S et al (2012) Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin Exp Hypertens 34(2):99–106CrossRef
86.
go back to reference Ueno M et al (2012) Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin Exp Hypertens 34(5):305–310CrossRef Ueno M et al (2012) Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin Exp Hypertens 34(5):305–310CrossRef
87.
go back to reference Moriya C et al (2013) Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens 35(8):607–613CrossRef Moriya C et al (2013) Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens 35(8):607–613CrossRef
88.
go back to reference Chen YY et al (2010) Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed Pharmacother 64:291–295CrossRef Chen YY et al (2010) Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed Pharmacother 64:291–295CrossRef
89.
go back to reference Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582CrossRef Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582CrossRef
90.
go back to reference Zhang P, Zhang H, Wang H, Wei Y, Hu S (2006) Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 30:86–93CrossRef Zhang P, Zhang H, Wang H, Wei Y, Hu S (2006) Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 30:86–93CrossRef
Metadata
Title
Alginate Application for Heart and Cardiovascular Diseases
Authors
Zhengfan Xu
Mai T. Lam
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6910-9_7

Premium Partners