Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Alginate Biosynthesis and Biotechnological Production

Authors : M. Fata Moradali, Shirin Ghods, Bernd H. A. Rehm

Published in: Alginates and Their Biomedical Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alginates are natural exopolysaccharides produced by seaweeds and bacteria belonging to the genera Pseudomonas and Azotobacter. Due to exhibiting unique physicochemical properties, they have been widely applied for various industrial purposes such as in food, agricultural, cosmetic, pharmaceutical, and biomedical industries. In the last two decades, they have found their way into the advanced pharmaceutical and biomedical applications, owing to their biocompatibility and non-toxicity as well as versatility in view of modifications. So far, algal alginates have been the sole commercialized products applied for various purposes, while the potential uses of bacterial alginates remain unharnessed. Importantly, algal and bacteria alginates differ substantially from each other with respect to their composition, modifications, molecular mass, viscoelastic properties, and polydispersity. Indeed, bacterial alginates may meet current needs in the field of advanced pharmaceutical and biomedical engineering. In this chapter, after a brief overview of alginate discovery, general properties, applications, and comparative assessment of algal and bacterial resources, current findings about the biosynthesis of alginates, mainly in bacteria, will be discussed. Furthermore, we will discuss the current understanding of alginate polymerizing and modifying enzymes and their structure-function relationship. Knowledge about alginate biosynthesis/modification enzymes provides foundation for rational design of cell factories for producing tailor-made alginates. As a conclusion, advanced understanding of alginate biosynthesis pathway and involved enzymes creates an opportunity for bioengineering and synthetic biology approaches toward the production of alginates exhibiting desired material properties suitable for pharmaceutical and biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stanford ECC (1883) On align: a new substance obtained from some of the commoner species of marine algae. Chem News 47:254–257 Stanford ECC (1883) On align: a new substance obtained from some of the commoner species of marine algae. Chem News 47:254–257
2.
go back to reference Lesser MA (1947) Alginates in drugs and cosmetics. Drug Cosmet Ind 61(6):761–842 Lesser MA (1947) Alginates in drugs and cosmetics. Drug Cosmet Ind 61(6):761–842
3.
go back to reference Woodward F (1951) The Scottish seaweed research association. J Mar Biol Assoc UK 29(03):719–725CrossRef Woodward F (1951) The Scottish seaweed research association. J Mar Biol Assoc UK 29(03):719–725CrossRef
4.
go back to reference Steiner AB, McNeely WH (1951) Organic derivatives of alginic acid. Ind Eng Chem 43(9):2073–2077CrossRef Steiner AB, McNeely WH (1951) Organic derivatives of alginic acid. Ind Eng Chem 43(9):2073–2077CrossRef
5.
go back to reference Krefting A (1896) An improved method of treating seaweed to obtain valuable products therefrom. Br Patent 11:538 Krefting A (1896) An improved method of treating seaweed to obtain valuable products therefrom. Br Patent 11:538
6.
go back to reference Krefting A (1898) Axel krefting. Google Patents Krefting A (1898) Axel krefting. Google Patents
7.
go back to reference Atsuki K, Tomoda Y (1926) Studies on seaweeds of Japan I. The chemical constituents of Laminaria. J Soc Chem Ind Japan 29:509–517 Atsuki K, Tomoda Y (1926) Studies on seaweeds of Japan I. The chemical constituents of Laminaria. J Soc Chem Ind Japan 29:509–517
8.
go back to reference Nelson WL, Cretcher LH (1929) The alginic acid from macrocystis pyrifera. J Am Chem Soc 51(6):1914–1922CrossRef Nelson WL, Cretcher LH (1929) The alginic acid from macrocystis pyrifera. J Am Chem Soc 51(6):1914–1922CrossRef
9.
go back to reference Nelson WL, Cretcher LH (1930) The isolation and identification of D-mannuronic acid lactone from the Macrocystis pyrifera. J Am Chem Soc 52(5):2130–2132CrossRef Nelson WL, Cretcher LH (1930) The isolation and identification of D-mannuronic acid lactone from the Macrocystis pyrifera. J Am Chem Soc 52(5):2130–2132CrossRef
10.
go back to reference Nelson WL, Cretcher LH (1932) The properties of D-mannuronic acid lactone. J Am Chem Soc 54(8):3409–3412CrossRef Nelson WL, Cretcher LH (1932) The properties of D-mannuronic acid lactone. J Am Chem Soc 54(8):3409–3412CrossRef
11.
go back to reference Bird GM, Haas P (1931) On the nature of the cell wall constituents of Laminaria spp. Mannuronic acid. Biochem J 25(2):403CrossRef Bird GM, Haas P (1931) On the nature of the cell wall constituents of Laminaria spp. Mannuronic acid. Biochem J 25(2):403CrossRef
12.
go back to reference Miwa T (1930) Alginic acid. J Chem Soc Japan 51:738–745 Miwa T (1930) Alginic acid. J Chem Soc Japan 51:738–745
13.
go back to reference Schoeffel E, Link KP (1933) Isolation of α-and β, D-Mannuronic acid. J Biol Chem 100(2):397–405 Schoeffel E, Link KP (1933) Isolation of α-and β, D-Mannuronic acid. J Biol Chem 100(2):397–405
14.
15.
go back to reference Hirst E, Jones J, Jones WO (1939) Structure of alginic acid. Nature 143:857CrossRef Hirst E, Jones J, Jones WO (1939) Structure of alginic acid. Nature 143:857CrossRef
16.
go back to reference Fischer F, Dörfel H (1955) Die polyuronsäuren der braunalgen (Kohlenhydrate der Algen I). Hoppe-Seyler’s Zeitschrift für physiologische Chemie 302(1-2):186–203CrossRef Fischer F, Dörfel H (1955) Die polyuronsäuren der braunalgen (Kohlenhydrate der Algen I). Hoppe-Seyler’s Zeitschrift für physiologische Chemie 302(1-2):186–203CrossRef
17.
go back to reference Linker A, Jones RS (1964) A polysaccharide resembling alginic acid from a Pseudomonas microorganism. Nature 204:187–188CrossRef Linker A, Jones RS (1964) A polysaccharide resembling alginic acid from a Pseudomonas microorganism. Nature 204:187–188CrossRef
18.
go back to reference Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from Pseudomonads. J Biol Chem 241(16):3845–3851 Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from Pseudomonads. J Biol Chem 241(16):3845–3851
19.
go back to reference Gorin P, Spencer J (1966) Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 44(9):993–998CrossRef Gorin P, Spencer J (1966) Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 44(9):993–998CrossRef
20.
go back to reference Govan JR, Fyfe JA, Jarman TR (1981) Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol 125(1):217–220 Govan JR, Fyfe JA, Jarman TR (1981) Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol 125(1):217–220
21.
22.
go back to reference Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. MBio 6(3):e00453-00415 Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. MBio 6(3):e00453-00415
23.
go back to reference Douthit SA, Dlakic M, Ohman DE, Franklin MJ (2005) Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed β-helix. J Bacteriol 187(13):4573–4583CrossRef Douthit SA, Dlakic M, Ohman DE, Franklin MJ (2005) Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed β-helix. J Bacteriol 187(13):4573–4583CrossRef
24.
go back to reference SkjÅk-Bræk G, Paoletti S, Gianferrara T (1989) Selective acetylation of mannuronic acid residues in calcium alginate gels. Carbohydr Res 185(1):119–129CrossRef SkjÅk-Bræk G, Paoletti S, Gianferrara T (1989) Selective acetylation of mannuronic acid residues in calcium alginate gels. Carbohydr Res 185(1):119–129CrossRef
25.
go back to reference Windhues T, Borchard W (2003) Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydr Polym 52(1):47–52CrossRef Windhues T, Borchard W (2003) Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydr Polym 52(1):47–52CrossRef
26.
go back to reference Mørch ÝA, Donati I, Strand BL, Skjåk-Bræk G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480CrossRef Mørch ÝA, Donati I, Strand BL, Skjåk-Bræk G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480CrossRef
27.
go back to reference Haug A, Smidsrod O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24(3):843–854CrossRef Haug A, Smidsrod O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24(3):843–854CrossRef
28.
go back to reference Haug A, Smidsrød O (1967) Strontium–calcium selectivity of alginates. Nature 215(5102):757–757CrossRef Haug A, Smidsrød O (1967) Strontium–calcium selectivity of alginates. Nature 215(5102):757–757CrossRef
29.
go back to reference Ouwerx C, Velings N, Mestdagh M, Axelos M (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Networks 6(5):393–408CrossRef Ouwerx C, Velings N, Mestdagh M, Axelos M (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Networks 6(5):393–408CrossRef
30.
go back to reference Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2(4):1089–1096CrossRef Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2(4):1089–1096CrossRef
31.
go back to reference Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT (2007) Evidence for egg-box-compatible interactions in calcium− alginate gels from fiber X-ray diffraction. Biomacromolecules 8(7):2098–2103CrossRef Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT (2007) Evidence for egg-box-compatible interactions in calcium− alginate gels from fiber X-ray diffraction. Biomacromolecules 8(7):2098–2103CrossRef
32.
go back to reference Straatmann A, Windhues T, Borchard W (2004) Effects of acetylation on thermodynamic properties of seaweed alginate in sodium chloride solutions. In: Analytical ultracentrifugation VII. Springer, Berlin, pp 26–30CrossRef Straatmann A, Windhues T, Borchard W (2004) Effects of acetylation on thermodynamic properties of seaweed alginate in sodium chloride solutions. In: Analytical ultracentrifugation VII. Springer, Berlin, pp 26–30CrossRef
33.
go back to reference Delben F, Cesaro A, Paoletti S, Crescenzi V (1982) Monomer composition and acetyl content as main determinants of the ionization behavior of alginates. Carbohydr Res 100(1):C46–C50CrossRef Delben F, Cesaro A, Paoletti S, Crescenzi V (1982) Monomer composition and acetyl content as main determinants of the ionization behavior of alginates. Carbohydr Res 100(1):C46–C50CrossRef
34.
go back to reference Onsøyen E (1997) Alginates. In: Thickening and gelling agents for food. Springer, Boston, pp 22–44CrossRef Onsøyen E (1997) Alginates. In: Thickening and gelling agents for food. Springer, Boston, pp 22–44CrossRef
35.
go back to reference McHugh DJ (1987) Production, properties and uses of alginates. Production and utilization of products from commercial seaweeds. FAO Fish Tech Pap 288:58–115 McHugh DJ (1987) Production, properties and uses of alginates. Production and utilization of products from commercial seaweeds. FAO Fish Tech Pap 288:58–115
36.
go back to reference Smith AM, Miri T (2010) 6 alginates in foods. Practical food rheology: an interpretive approach:113 Smith AM, Miri T (2010) 6 alginates in foods. Practical food rheology: an interpretive approach:113
37.
go back to reference Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630CrossRef Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630CrossRef
38.
go back to reference Skaugrud Ø, Hagen A, Borgersen B, Dornish M (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev 16(1):23–40CrossRef Skaugrud Ø, Hagen A, Borgersen B, Dornish M (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev 16(1):23–40CrossRef
39.
go back to reference Bhattarai N, Li Z, Edmondson D, Zhang M (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef Bhattarai N, Li Z, Edmondson D, Zhang M (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef
40.
go back to reference Douglas KL, Piccirillo CA, Tabrizian M (2006) Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Release 115(3):354–361CrossRef Douglas KL, Piccirillo CA, Tabrizian M (2006) Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Release 115(3):354–361CrossRef
41.
go back to reference Cook W (1986) Alginate dental impression materials: chemistry, structure, and properties. J Biomed Mater Res 20(1):1–24CrossRef Cook W (1986) Alginate dental impression materials: chemistry, structure, and properties. J Biomed Mater Res 20(1):1–24CrossRef
42.
go back to reference Craig R (1988) Review of dental impression materials. Adv Dental Res 2(1):51–64CrossRef Craig R (1988) Review of dental impression materials. Adv Dental Res 2(1):51–64CrossRef
43.
go back to reference Groves A, Lawrence J (1986) Alginate dressing as a donor site haemostat. Ann R Coll Surg Engl 68(1):27 Groves A, Lawrence J (1986) Alginate dressing as a donor site haemostat. Ann R Coll Surg Engl 68(1):27
44.
go back to reference Barnett S, Varley S (1987) The effects of calcium alginate on wound healing. Ann R Coll Surg Engl 69(4):153 Barnett S, Varley S (1987) The effects of calcium alginate on wound healing. Ann R Coll Surg Engl 69(4):153
45.
go back to reference Hrynyk M, Martins-Green M, Barron AE, Neufeld RJ (2012) Alginate-PEG sponge architecture and role in the design of insulin release dressings. Biomacromolecules 13(5):1478–1485CrossRef Hrynyk M, Martins-Green M, Barron AE, Neufeld RJ (2012) Alginate-PEG sponge architecture and role in the design of insulin release dressings. Biomacromolecules 13(5):1478–1485CrossRef
46.
go back to reference Barbetta A, Barigelli E, Dentini M (2009) Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules 10(8):2328–2337CrossRef Barbetta A, Barigelli E, Dentini M (2009) Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules 10(8):2328–2337CrossRef
47.
go back to reference Andersen T, Melvik JE, Gåserød O, Alsberg E, Christensen BE (2012) Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters. Biomacromolecules 13(11):3703–3710CrossRef Andersen T, Melvik JE, Gåserød O, Alsberg E, Christensen BE (2012) Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters. Biomacromolecules 13(11):3703–3710CrossRef
48.
go back to reference Shin S-J, Park J-Y, Lee J-Y, Park H, Park Y-D, Lee K-B, Whang C-M, Lee S-H (2007) “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23(17):9104–9108CrossRef Shin S-J, Park J-Y, Lee J-Y, Park H, Park Y-D, Lee K-B, Whang C-M, Lee S-H (2007) “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23(17):9104–9108CrossRef
49.
go back to reference Daemi H, Barikani M, Barmar M (2013) Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 95(2):630–636CrossRef Daemi H, Barikani M, Barmar M (2013) Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 95(2):630–636CrossRef
50.
go back to reference Senuma Y, Lowe C, Zweifel Y, Hilborn J, Marison I (2000) Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol Bioeng 67(5):616–622CrossRef Senuma Y, Lowe C, Zweifel Y, Hilborn J, Marison I (2000) Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol Bioeng 67(5):616–622CrossRef
51.
go back to reference Bodmeier R, Chen H, Paeratakul O (1989) A novel approach to the oral delivery of micro-or nanoparticles. Pharm Res 6(5):413–417CrossRef Bodmeier R, Chen H, Paeratakul O (1989) A novel approach to the oral delivery of micro-or nanoparticles. Pharm Res 6(5):413–417CrossRef
52.
go back to reference Kierstan M, Bucke C (1977) The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol Bioeng 19(3):387–397CrossRef Kierstan M, Bucke C (1977) The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol Bioeng 19(3):387–397CrossRef
53.
go back to reference Palmieri G, Giardina P, Desiderio B, Marzullo L, Giamberini M, Sannia G (1994) A new enzyme immobilization procedure using copper alginate gel: application to a fungal phenol oxidase. Enzym Microb Technol 16(2):151–158CrossRef Palmieri G, Giardina P, Desiderio B, Marzullo L, Giamberini M, Sannia G (1994) A new enzyme immobilization procedure using copper alginate gel: application to a fungal phenol oxidase. Enzym Microb Technol 16(2):151–158CrossRef
54.
go back to reference Fukushima Y, Okamura K, Imai K, Motai H (1988) A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol Bioeng 32(5):584–594CrossRef Fukushima Y, Okamura K, Imai K, Motai H (1988) A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol Bioeng 32(5):584–594CrossRef
55.
go back to reference Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555CrossRef Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555CrossRef
56.
go back to reference Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12) Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12)
57.
go back to reference Serp D, Cantana E, Heinzen C, Von Stockar U, Marison I (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 70(1):41–53CrossRef Serp D, Cantana E, Heinzen C, Von Stockar U, Marison I (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 70(1):41–53CrossRef
58.
go back to reference Baruch L, Machluf M (2006) Alginate–chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 82(6):570–579CrossRef Baruch L, Machluf M (2006) Alginate–chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 82(6):570–579CrossRef
59.
go back to reference Orive G, Hernandez R, Gascon A, Igartua M, Pedraz J (2003) Survival of different cell lines in alginate-agarose microcapsules. Eur J Pharm Sci 18(1):23–30CrossRef Orive G, Hernandez R, Gascon A, Igartua M, Pedraz J (2003) Survival of different cell lines in alginate-agarose microcapsules. Eur J Pharm Sci 18(1):23–30CrossRef
60.
go back to reference Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef
61.
go back to reference de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617CrossRef de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617CrossRef
62.
go back to reference Kulseng B, Skjåk-Bræk G, Ryan L, Andersson A, King A, Faxvaag A, Espevik T (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67(7):978–984CrossRef Kulseng B, Skjåk-Bræk G, Ryan L, Andersson A, King A, Faxvaag A, Espevik T (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67(7):978–984CrossRef
63.
go back to reference Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928CrossRef Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928CrossRef
64.
go back to reference Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521CrossRef Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521CrossRef
65.
go back to reference Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRef Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRef
66.
go back to reference Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng B Rev 14(1):61–86CrossRef Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng B Rev 14(1):61–86CrossRef
67.
go back to reference Perka C, Spitzer RS, Lindenhayn K, Sittinger M, Schultz O (2000) Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res A 49(3):305–311CrossRef Perka C, Spitzer RS, Lindenhayn K, Sittinger M, Schultz O (2000) Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res A 49(3):305–311CrossRef
68.
go back to reference Murphy WL, Mooney DJ (1999) Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J Periodontal Res 34(7):413–419CrossRef Murphy WL, Mooney DJ (1999) Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J Periodontal Res 34(7):413–419CrossRef
69.
go back to reference Kwiatek MA, Roman S, Fareeduddin A, Pandolfino JE, Kahrilas PJ (2011) An alginate-antacid formulation (Gaviscon Double Action Liquid) can eliminate or displace the postprandial ‘acid pocket’ in symptomatic GERD patients. Aliment Pharmacol Ther 34(1):59–66CrossRef Kwiatek MA, Roman S, Fareeduddin A, Pandolfino JE, Kahrilas PJ (2011) An alginate-antacid formulation (Gaviscon Double Action Liquid) can eliminate or displace the postprandial ‘acid pocket’ in symptomatic GERD patients. Aliment Pharmacol Ther 34(1):59–66CrossRef
70.
go back to reference Washington N (1990) Investigation into the barrier action of an alginate gastric reflux suppressant, liquid Gaviscon®. Drug Investig 2(1):23–30CrossRef Washington N (1990) Investigation into the barrier action of an alginate gastric reflux suppressant, liquid Gaviscon®. Drug Investig 2(1):23–30CrossRef
71.
go back to reference Andresen I-L, Smidsørod O (1977) Temperature dependence of the elastic properties of alginate gels. Carbohydr Res 58(2):271–279CrossRef Andresen I-L, Smidsørod O (1977) Temperature dependence of the elastic properties of alginate gels. Carbohydr Res 58(2):271–279CrossRef
72.
go back to reference Indergaard M, Skjåk-Bræk G (1987) Characteristics of alginate from Laminaria digitata cultivated in a high-phosphate environment. In: Twelfth international seaweed symposium, Springer, pp 541–549 Indergaard M, Skjåk-Bræk G (1987) Characteristics of alginate from Laminaria digitata cultivated in a high-phosphate environment. In: Twelfth international seaweed symposium, Springer, pp 541–549
73.
go back to reference Kloareg B, Quatrano R (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315 Kloareg B, Quatrano R (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315
74.
go back to reference Lin T-Y, Hassid W (1966) Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem 241(22):5284–5297 Lin T-Y, Hassid W (1966) Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem 241(22):5284–5297
75.
go back to reference Haug A, Larsen B (1969) Biosynthesis of alginate. Epimerisation of D-mannuronic to L-guluronic acid residues in the polymer chain. Biochim Biophy Acta Genl Subj 192(3):557–559CrossRef Haug A, Larsen B (1969) Biosynthesis of alginate. Epimerisation of D-mannuronic to L-guluronic acid residues in the polymer chain. Biochim Biophy Acta Genl Subj 192(3):557–559CrossRef
76.
go back to reference Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648CrossRef Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648CrossRef
77.
go back to reference Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39CrossRef Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39CrossRef
78.
go back to reference Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246CrossRef Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246CrossRef
79.
go back to reference Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17(4):327–361CrossRef Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17(4):327–361CrossRef
80.
go back to reference Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRef Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRef
81.
go back to reference Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8(3):583–590CrossRef Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8(3):583–590CrossRef
82.
go back to reference Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16(10):2997–3011CrossRef Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16(10):2997–3011CrossRef
83.
go back to reference Schurr M, Martin D, Mudd M, Hibler N, Boucher J, Deretic V (1992) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39(4):371–376 Schurr M, Martin D, Mudd M, Hibler N, Boucher J, Deretic V (1992) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39(4):371–376
84.
go back to reference Shankar S, Ye RW, Schlictman D, Chakrabarty A (1995) Exopolysaccharide alginate synthesis in Pseudomonas seruginosa: enzymology and regulation of gene expression. Adv Enzymol Relat Areas Mol Biol 70:221–255 Shankar S, Ye RW, Schlictman D, Chakrabarty A (1995) Exopolysaccharide alginate synthesis in Pseudomonas seruginosa: enzymology and regulation of gene expression. Adv Enzymol Relat Areas Mol Biol 70:221–255
85.
go back to reference Paletta JL, Ohman DE (2012) Evidence for two promoters internal to the alginate biosynthesis operon in Pseudomonas aeruginosa. Curr Microbiol 65(6):770–775CrossRef Paletta JL, Ohman DE (2012) Evidence for two promoters internal to the alginate biosynthesis operon in Pseudomonas aeruginosa. Curr Microbiol 65(6):770–775CrossRef
86.
go back to reference Lynn A, Sokatch J (1984) Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii. J Bacteriol 158(3):1161–1162 Lynn A, Sokatch J (1984) Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii. J Bacteriol 158(3):1161–1162
87.
go back to reference Narbad A, Russell N, Gacesa P (1987) Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesized from specifically-labelled 14C-monosaccharide precursors. Microbios 54(220-221):171–179 Narbad A, Russell N, Gacesa P (1987) Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesized from specifically-labelled 14C-monosaccharide precursors. Microbios 54(220-221):171–179
88.
go back to reference May TB, Shinabarger D, Boyd A, Chakrabarty AM (1994) Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 269(7):4872–4877 May TB, Shinabarger D, Boyd A, Chakrabarty AM (1994) Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 269(7):4872–4877
89.
go back to reference Zielinski NA, Chakrabarty AM, Berry A (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266(15):9754–9763 Zielinski NA, Chakrabarty AM, Berry A (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266(15):9754–9763
90.
go back to reference Shinabarger D, Berry A, May TB, Rothmel R, Fialho A, Chakrabarty AM (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266(4):2080–2088 Shinabarger D, Berry A, May TB, Rothmel R, Fialho A, Chakrabarty AM (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266(4):2080–2088
91.
go back to reference Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650 Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650
92.
go back to reference Roychoudhury S, May T, Gill J, Singh S, Feingold D, Chakrabarty AM (1989) Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem 264(16):9380–9385 Roychoudhury S, May T, Gill J, Singh S, Feingold D, Chakrabarty AM (1989) Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem 264(16):9380–9385
93.
go back to reference Tatnell PJ, Russell NJ, Gacesa P (1994) GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology 140(7):1745–1754CrossRef Tatnell PJ, Russell NJ, Gacesa P (1994) GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology 140(7):1745–1754CrossRef
94.
go back to reference Tavares IM, Leitão JH, Fialho AM, Sá-Correia I (1999) Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res Microbiol 150(2):105–116CrossRef Tavares IM, Leitão JH, Fialho AM, Sá-Correia I (1999) Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res Microbiol 150(2):105–116CrossRef
95.
go back to reference Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BH (2013) Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 79(10):3264–3272CrossRef Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BH (2013) Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 79(10):3264–3272CrossRef
96.
go back to reference Hay ID, Schmidt O, Filitcheva J, Rehm BH (2012) Identification of a periplasmic AlgK–AlgX–MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 93(1):215–227CrossRef Hay ID, Schmidt O, Filitcheva J, Rehm BH (2012) Identification of a periplasmic AlgK–AlgX–MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 93(1):215–227CrossRef
97.
go back to reference Franklin MJ, Douthit SA, McClure MA (2004) Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186(14):4759–4773CrossRef Franklin MJ, Douthit SA, McClure MA (2004) Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186(14):4759–4773CrossRef
98.
go back to reference Oglesby LL, Jain S, Ohman DE (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154(6):1605–1615CrossRef Oglesby LL, Jain S, Ohman DE (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154(6):1605–1615CrossRef
99.
go back to reference Remminghorst U, Rehm BH (2006) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580(16):3883–3888CrossRef Remminghorst U, Rehm BH (2006) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580(16):3883–3888CrossRef
100.
go back to reference Remminghorst U, Hay ID, Rehm BH (2009) Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. J Biotechnol 140(3):176–183CrossRef Remminghorst U, Hay ID, Rehm BH (2009) Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. J Biotechnol 140(3):176–183CrossRef
101.
go back to reference Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65(4):876–895CrossRef Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65(4):876–895CrossRef
102.
go back to reference Hay ID, Remminghorst U, Rehm BH (2009) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75(4):1110–1120CrossRef Hay ID, Remminghorst U, Rehm BH (2009) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75(4):1110–1120CrossRef
103.
go back to reference Moradali MF, Ghods S, Rehm BH (2017) Activation mechanism and cellular localization of membrane-anchored alginate polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 83:03499–03416CrossRef Moradali MF, Ghods S, Rehm BH (2017) Activation mechanism and cellular localization of membrane-anchored alginate polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 83:03499–03416CrossRef
104.
go back to reference Smidsrød O, Glover R, Whittington SG (1973) The relative extension of alginates having different chemical composition. Carbohydr Res 27(1):107–118CrossRef Smidsrød O, Glover R, Whittington SG (1973) The relative extension of alginates having different chemical composition. Carbohydr Res 27(1):107–118CrossRef
105.
go back to reference Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47(4):1123–1133CrossRef Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47(4):1123–1133CrossRef
106.
go back to reference Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, S-j S, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185(12):3515–3523CrossRef Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, S-j S, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185(12):3515–3523CrossRef
107.
go back to reference Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G, Valla S (2006) Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases. J Bacteriol 188(15):5551–5560CrossRef Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G, Valla S (2006) Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases. J Bacteriol 188(15):5551–5560CrossRef
108.
go back to reference Ertesvåg H, Valla S (1999) The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. J Bacteriol 181(10):3033–3038 Ertesvåg H, Valla S (1999) The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. J Bacteriol 181(10):3033–3038
109.
go back to reference Ullrich MS, Schergaut M, Boch J, Ullrich B (2000) Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. Microbiology 146(10):2457–2468CrossRef Ullrich MS, Schergaut M, Boch J, Ullrich B (2000) Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. Microbiology 146(10):2457–2468CrossRef
110.
go back to reference Bjerkan TM, Bender CL, Ertesvåg H, Drabløs F, Fakhr MK, Preston LA, Skjåk-Bræk G, Valla S (2004) The Pseudomonas syringae genome encodes a combined mannuronan C-5-epimerase and O-acetylhydrolase, which strongly enhances the predicted gel-forming properties of alginates. J Biol Chem 279(28):28920–28929CrossRef Bjerkan TM, Bender CL, Ertesvåg H, Drabløs F, Fakhr MK, Preston LA, Skjåk-Bræk G, Valla S (2004) The Pseudomonas syringae genome encodes a combined mannuronan C-5-epimerase and O-acetylhydrolase, which strongly enhances the predicted gel-forming properties of alginates. J Biol Chem 279(28):28920–28929CrossRef
111.
go back to reference Ertesvåg H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6 Ertesvåg H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6
112.
go back to reference Nyvall P, Corre E, Boisset C, Barbeyron T, Rousvoal S, Scornet D, Kloareg B, Boyen C (2003) Characterization of mannuronan C-5-epimerase genes from the brown alga Laminaria digitata. Plant Physiol 133(2):726–735CrossRef Nyvall P, Corre E, Boisset C, Barbeyron T, Rousvoal S, Scornet D, Kloareg B, Boyen C (2003) Characterization of mannuronan C-5-epimerase genes from the brown alga Laminaria digitata. Plant Physiol 133(2):726–735CrossRef
113.
go back to reference Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188(1):82–97CrossRef Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188(1):82–97CrossRef
114.
go back to reference Tonon T, Rousvoal S, Roeder V, Boyen C (2008) Expression profiling of the mannuronan C5 epimerase multigenic family in the brown alga Laminaria digitata (Phaeophyceae) under biotic stress condition. J Phycol 44(5):1250–1256CrossRef Tonon T, Rousvoal S, Roeder V, Boyen C (2008) Expression profiling of the mannuronan C5 epimerase multigenic family in the brown alga Laminaria digitata (Phaeophyceae) under biotic stress condition. J Phycol 44(5):1250–1256CrossRef
115.
go back to reference Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MT, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 10(8):e1004334CrossRef Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MT, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 10(8):e1004334CrossRef
116.
go back to reference Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O-acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184(11):3000–3007CrossRef Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O-acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184(11):3000–3007CrossRef
117.
go back to reference Franklin MJ, Ohman DE (1996) Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O-acetylation. J Bacteriol 178(8):2186–2195CrossRef Franklin MJ, Ohman DE (1996) Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O-acetylation. J Bacteriol 178(8):2186–2195CrossRef
118.
go back to reference Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175(16):5057–5065CrossRef Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175(16):5057–5065CrossRef
119.
go back to reference Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54(1):289–340CrossRef Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54(1):289–340CrossRef
120.
go back to reference Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436CrossRef Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436CrossRef
121.
go back to reference Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BH (2016) Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 6 Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BH (2016) Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 6
122.
go back to reference Bakkevig K, Sletta H, Gimmestad M, Aune R, Ertesvåg H, Degnes K, Christensen BE, Ellingsen TE, Valla S (2005) Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 187(24):8375–8384CrossRef Bakkevig K, Sletta H, Gimmestad M, Aune R, Ertesvåg H, Degnes K, Christensen BE, Ellingsen TE, Valla S (2005) Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 187(24):8375–8384CrossRef
123.
go back to reference Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180(3):634–641 Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180(3):634–641
124.
go back to reference Robles-Price A, Wong TY, Sletta H, Valla S, Schiller NL (2004) AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 186(21):7369–7377CrossRef Robles-Price A, Wong TY, Sletta H, Valla S, Schiller NL (2004) AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 186(21):7369–7377CrossRef
125.
go back to reference Rehm B, Boheim G, Tommassen J, Winkler U (1994) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176(18):5639–5647CrossRef Rehm B, Boheim G, Tommassen J, Winkler U (1994) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176(18):5639–5647CrossRef
126.
go back to reference Whitney JC, Hay ID, Li C, Eckford PDW, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, Lynne Howell P (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 108(32):13083–13088CrossRef Whitney JC, Hay ID, Li C, Eckford PDW, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, Lynne Howell P (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 108(32):13083–13088CrossRef
127.
go back to reference Keiski C-L, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18(2):265–273CrossRef Keiski C-L, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18(2):265–273CrossRef
128.
go back to reference Remminghorst U, Rehm BH (2006) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72(1):298–305CrossRef Remminghorst U, Rehm BH (2006) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72(1):298–305CrossRef
129.
go back to reference Skjåk-Bræk G, Donati I, Paoletti S (2015) Alginate hydrogels: properties and applications. In: Matricardi FA P, Coviello T (eds) Polysaccharide hydrogels: characterization and biomedical applications. Pan Stanford Publishing Pte Ltd, Singapore Skjåk-Bræk G, Donati I, Paoletti S (2015) Alginate hydrogels: properties and applications. In: Matricardi FA P, Coviello T (eds) Polysaccharide hydrogels: characterization and biomedical applications. Pan Stanford Publishing Pte Ltd, Singapore
130.
go back to reference Donati I, Paoletti S (2009) Material properties of alginates. In: Alginates: biology and applications. Springer, Berlin, pp 1–53 Donati I, Paoletti S (2009) Material properties of alginates. In: Alginates: biology and applications. Springer, Berlin, pp 1–53
131.
go back to reference Conti E, Flaibani A, O’Regan M, Sutherland IW (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology 140(5):1125–1132CrossRef Conti E, Flaibani A, O’Regan M, Sutherland IW (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology 140(5):1125–1132CrossRef
Metadata
Title
Alginate Biosynthesis and Biotechnological Production
Authors
M. Fata Moradali
Shirin Ghods
Bernd H. A. Rehm
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6910-9_1

Premium Partners