Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2018

06-07-2017 | Review Article

Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives

Authors: Emmanuel Damilano Dutra, Fernando Almeida Santos, Bárbara Ribeiro Alves Alencar, Alexandre Libanio Silva Reis, Raquel de Fatima Rodrigues de Souza, Katia Aparecida da Silva Aquino, Marcos Antônio Morais Jr, Rômulo Simões Cezar Menezes

Published in: Biomass Conversion and Biorefinery | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulosic biomass is a renewable and abundant resource that is suitable for the production of bio-based materials such as biofuels and chemical products. However, owing to its complex chemical composition, it requires a process that enhances the release of sugars. Pretreatment is an essential stage in increasing the efficiency of enzymatic hydrolysis of lignocellulosic biomass. The most widely used pretreatment methods operate at high temperatures (160–290 °C) and pressures (0.69 to 4.9 MPa) and generate biological growth inhibitors such as furfural and hydroxymethylfurfural (HMF). Thus, there has been a growing need to adopt new approaches for an effective pretreatment that operates at ambient temperature and pressure and reduces the generation of inhibitors. Among these methods, alkaline hydrogen peroxide (AHP) is notable because it is effective for a wide range of lignocellulosic biomass concentrations, and can provide a high degree of enzymatic hydrolysis efficiency. However, few results have been discussed in the literature. Given this, the aim of this study was to investigate the use of alkaline hydrogen peroxide (AHP) as an oxidative pretreatment agent to improve the efficiency of enzymatic hydrolysis for different types of biomass and examine the key areas of the pretreatment. Finally, there is a discussion of the challenges facing a large-scale application of this method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Lora EES, Gómez EO (2008) Biomassa para energia. Editora da Unicamp, Campinas Lora EES, Gómez EO (2008) Biomassa para energia. Editora da Unicamp, Campinas
4.
go back to reference Mckendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRef Mckendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRef
6.
7.
go back to reference Arenas-Cárdenas P, López-López A, Moeller-Chávez GE, León-Becerril E (2016) Current pretreatments of Lignocellulosic residues in the production of bioethanol. Waste Biomass Valor. V.S/n: 1-21. doi:10.1007/s12649-016-9559-4 Arenas-Cárdenas P, López-López A, Moeller-Chávez GE, León-Becerril E (2016) Current pretreatments of Lignocellulosic residues in the production of bioethanol. Waste Biomass Valor. V.S/n: 1-21. doi:10.​1007/​s12649-016-9559-4
12.
go back to reference Santos FA, Queiróz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2014) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à produção de etanol celulósico. Quim Nova 37:56–62CrossRef Santos FA, Queiróz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2014) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à produção de etanol celulósico. Quim Nova 37:56–62CrossRef
13.
go back to reference Cardoso WS, Santos FA, Mota CM, Tardin FD, Resende ST, Queiroz JH (2012) Pré-tratamentos de biomassa para produção de etanol de segunda geração. Analytica 56:64–76 Cardoso WS, Santos FA, Mota CM, Tardin FD, Resende ST, Queiroz JH (2012) Pré-tratamentos de biomassa para produção de etanol de segunda geração. Analytica 56:64–76
14.
15.
go back to reference Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef
17.
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.​1021/​ie801542g CrossRef
18.
19.
go back to reference Gould JM (1985) Enhanced polysaccharide recovery from agricultural residues and perennial grasses treated with alkaline hydrogen peroxide. Biotechnol Bioeng 27:893–896CrossRef Gould JM (1985) Enhanced polysaccharide recovery from agricultural residues and perennial grasses treated with alkaline hydrogen peroxide. Biotechnol Bioeng 27:893–896CrossRef
20.
22.
go back to reference Rabelo SC, Maciel Filho R, Costa AC (2008) A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol 144:87–100. doi:10.1007/s12010-008-8200-9 CrossRef Rabelo SC, Maciel Filho R, Costa AC (2008) A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol 144:87–100. doi:10.​1007/​s12010-008-8200-9 CrossRef
23.
go back to reference Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 48:7346–7353. doi:10.1021/ie8016863 CrossRef Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 48:7346–7353. doi:10.​1021/​ie8016863 CrossRef
25.
26.
go back to reference Banerjee G, Car S, Liu T, Williams DL, Meza SL, Walton JD, Hodge DB (2012) Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 109:922–931. doi:10.1002/bit.24385 CrossRef Banerjee G, Car S, Liu T, Williams DL, Meza SL, Walton JD, Hodge DB (2012) Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 109:922–931. doi:10.​1002/​bit.​24385 CrossRef
29.
30.
go back to reference Juárez JM, Hernando AL, Torre RM, Lanza SB, Rodríguez SB (2016) Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour Technol 218:265–271. doi:10.1016/j.biortech.2016.06.087 CrossRef Juárez JM, Hernando AL, Torre RM, Lanza SB, Rodríguez SB (2016) Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour Technol 218:265–271. doi:10.​1016/​j.​biortech.​2016.​06.​087 CrossRef
31.
33.
go back to reference Virkajarvi I, Niemela MV, Hasanen A, Teir A (2009) Cellulosic ethanol via biochemical processing poses a challenge for developers and implementors. Bioresources 4:1718–1735 Virkajarvi I, Niemela MV, Hasanen A, Teir A (2009) Cellulosic ethanol via biochemical processing poses a challenge for developers and implementors. Bioresources 4:1718–1735
35.
go back to reference Reis ALS, Souza RFR, Torres RRNB, Leite FCB, Paiva PMG, Vidal EE, Morais MA Jr (2014) Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain. SpringerPlus 3:1–9. doi:10.1186/2193-1801-3-38 CrossRef Reis ALS, Souza RFR, Torres RRNB, Leite FCB, Paiva PMG, Vidal EE, Morais MA Jr (2014) Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain. SpringerPlus 3:1–9. doi:10.​1186/​2193-1801-3-38 CrossRef
36.
go back to reference Santos FA, Queiróz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2012) Potencial da palha da cana-de-açúcar para produção de etanol. Quim Nova 35:1004–1010CrossRef Santos FA, Queiróz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2012) Potencial da palha da cana-de-açúcar para produção de etanol. Quim Nova 35:1004–1010CrossRef
39.
go back to reference Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springerplus 1:1–7. doi:10.1186/2193-1801-1-27 CrossRef Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springerplus 1:1–7. doi:10.​1186/​2193-1801-1-27 CrossRef
40.
go back to reference Aguiar A, Ferraz A (2011) Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Quim Nova 34:1729–1738 Aguiar A, Ferraz A (2011) Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Quim Nova 34:1729–1738
42.
go back to reference Faulon JL, Carlson GA, Hatcher PG (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21:1169–1179CrossRef Faulon JL, Carlson GA, Hatcher PG (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21:1169–1179CrossRef
47.
49.
50.
52.
go back to reference Jin P, Li S, Lu SG, Zhu JG, Huang H (2011) Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Bioresour Technol 102:1815–1821. doi:10.1016/j.biortech.2010.09.048 CrossRef Jin P, Li S, Lu SG, Zhu JG, Huang H (2011) Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Bioresour Technol 102:1815–1821. doi:10.​1016/​j.​biortech.​2010.​09.​048 CrossRef
53.
go back to reference Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman GE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. doi:10.1126/science.1246843 CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman GE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. doi:10.​1126/​science.​1246843 CrossRef
54.
go back to reference Mattos IL, Shiraishi KA, Braz AD, Fernandes JR (2003) Peróxido de hidrogênio: importância e determinação. Quim Nova 26:373–380CrossRef Mattos IL, Shiraishi KA, Braz AD, Fernandes JR (2003) Peróxido de hidrogênio: importância e determinação. Quim Nova 26:373–380CrossRef
55.
go back to reference Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng 27:225–231CrossRef Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng 27:225–231CrossRef
57.
go back to reference Ioelovich M, Morag E (2012) Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. Bioresources 7:4672–4682CrossRef Ioelovich M, Morag E (2012) Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. Bioresources 7:4672–4682CrossRef
58.
go back to reference Bansal N, Bhalla A, Pattathil S, Adelman SL, Hahn MG, Hodge DB, Hegg EL (2016) Cell wall-associated transition metals improve alkaline-oxidative pretreatment in diverse hardwoods. Green Chem 18:1405–1415. doi:10.1039/C5GC01748C CrossRef Bansal N, Bhalla A, Pattathil S, Adelman SL, Hahn MG, Hodge DB, Hegg EL (2016) Cell wall-associated transition metals improve alkaline-oxidative pretreatment in diverse hardwoods. Green Chem 18:1405–1415. doi:10.​1039/​C5GC01748C CrossRef
59.
go back to reference Li Z, Bansal N, Azarpira A, Bhalla A, Chen CH, Ralph J, Hegg EL, Hodge DB (2015) Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar. Biotechnol Biofuel 8:123. doi:10.1186/s13068-015-0300-5 CrossRef Li Z, Bansal N, Azarpira A, Bhalla A, Chen CH, Ralph J, Hegg EL, Hodge DB (2015) Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar. Biotechnol Biofuel 8:123. doi:10.​1186/​s13068-015-0300-5 CrossRef
61.
go back to reference Sun RC, Fang JM, Tomkinson J (2000) Delignification of rye straw using hydrogen peroxide. Ind Crop Prod 12:71–83CrossRef Sun RC, Fang JM, Tomkinson J (2000) Delignification of rye straw using hydrogen peroxide. Ind Crop Prod 12:71–83CrossRef
64.
go back to reference Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33:873–879. doi:10.1007/s11814-015-0217-5 CrossRef Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33:873–879. doi:10.​1007/​s11814-015-0217-5 CrossRef
66.
go back to reference Banerjee G, Car S, Scott-Craig J, Hodge DB, Walton JD (2011) Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol Biofuel 4:1–15. doi:10.1186/1754-6834-4-16 CrossRef Banerjee G, Car S, Scott-Craig J, Hodge DB, Walton JD (2011) Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol Biofuel 4:1–15. doi:10.​1186/​1754-6834-4-16 CrossRef
68.
go back to reference Gould JM, Jasberg BK, Fahey GC, Berger LL (1989) Treatment of wheat straw with alkaline hydrogen peroxide in modified extruder. Biotechnol Bioeng 33:233–236CrossRef Gould JM, Jasberg BK, Fahey GC, Berger LL (1989) Treatment of wheat straw with alkaline hydrogen peroxide in modified extruder. Biotechnol Bioeng 33:233–236CrossRef
69.
70.
71.
73.
go back to reference Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140 Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
Metadata
Title
Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives
Authors
Emmanuel Damilano Dutra
Fernando Almeida Santos
Bárbara Ribeiro Alves Alencar
Alexandre Libanio Silva Reis
Raquel de Fatima Rodrigues de Souza
Katia Aparecida da Silva Aquino
Marcos Antônio Morais Jr
Rômulo Simões Cezar Menezes
Publication date
06-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2018
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0277-3

Other articles of this Issue 1/2018

Biomass Conversion and Biorefinery 1/2018 Go to the issue