Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

6. All-Carbon van der Waals Heterojunction Photodetectors

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

Carbon nanomaterials can be excellent conductors or the semiconductors with variable band gap according to their different atom hybridizations. For example, two-thirds of single-walled carbon nanotubes (SWCNTs) and fullerenes exhibit semiconducting properties, while one-thirds of SWCNTs and graphene are metallic with ultrahigh mobility. Except for SWCNT- and graphene-based heterostructures with other materials, all-carbon van der Waals (vdW) heterojunctions composed of two or three type carbon nanostructures have also great potential for next-generation ultrahigh performance photodetectors. In this chapter, the formation methods of all-carbon vdW heterojunctions will be firstly introduced, and then we will summarize systematically the state-of-art research progress on all-carbon vdW heterojunction photodetectors, including zero dimensional (0D)/one dimensional (1D), 0D/2D, and 1D/2D vdW heterojunctions. Finally, we also highlight the current challenges and the future perspectives of all-carbon vdW heterojunction photodetectors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geim AK, Grigorieva IV (2013). Van der Waals heterostructures. Nature, 499(7459): 419–425. CrossRef Geim AK, Grigorieva IV (2013). Van der Waals heterostructures. Nature, 499(7459): 419–425. CrossRef
2.
go back to reference Novoselov KS, Mishchenko A, Carvalho A, Neto AC (2016). 2D materials and van der Waals heterostructures. Science, 353(6298): aac9439. Novoselov KS, Mishchenko A, Carvalho A, Neto AC (2016). 2D materials and van der Waals heterostructures. Science, 353(6298): aac9439.
3.
go back to reference Liu Y, Weiss NO, Duan X, Cheng HC, Huang Y, Duan X (2016). Van der Waals heterostructures and devices. Nature Rev Mater, 1(9): 1–17. Liu Y, Weiss NO, Duan X, Cheng HC, Huang Y, Duan X (2016). Van der Waals heterostructures and devices. Nature Rev Mater, 1(9): 1–17.
4.
go back to reference Jariwala D, Marks TJ, Hersam MC (2017). Mixed-dimensional van der Waals heterostructures. Nature Mater, 16(2): 170–181. CrossRef Jariwala D, Marks TJ, Hersam MC (2017). Mixed-dimensional van der Waals heterostructures. Nature Mater, 16(2): 170–181. CrossRef
5.
go back to reference Su YJ, Xie MM, Lu XN, Wei H, Geng HJ, Yang Z, Zhang YF (2014). Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Adv, 4(10): 4839–4842. CrossRef Su YJ, Xie MM, Lu XN, Wei H, Geng HJ, Yang Z, Zhang YF (2014). Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Adv, 4(10): 4839–4842. CrossRef
6.
go back to reference Dong XW, Su YJ, Geng HJ, Li ZL, Yang C, Li XL, Zhang YF (2014). Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. J Mater Chem C, 2(36): 7477–7481. CrossRef Dong XW, Su YJ, Geng HJ, Li ZL, Yang C, Li XL, Zhang YF (2014). Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. J Mater Chem C, 2(36): 7477–7481. CrossRef
7.
go back to reference Shen J, Zhu Y, Yang X, Li C (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun, 48(31): 3686–3699. CrossRef Shen J, Zhu Y, Yang X, Li C (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun, 48(31): 3686–3699. CrossRef
8.
go back to reference Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef
9.
go back to reference He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef
10.
go back to reference Qin SC, Liu YD, Jiang HZ, Xu YB, Shi Y, Zhang R, Wang FQ (2019). All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Sci China Inf Sci, 2019, 62: 220403. Qin SC, Liu YD, Jiang HZ, Xu YB, Shi Y, Zhang R, Wang FQ (2019). All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Sci China Inf Sci, 2019, 62: 220403.
11.
go back to reference Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AR, Kittrell C, Hauge RH (2012). A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Commun, 3(1): 1–7. Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AR, Kittrell C, Hauge RH (2012). A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Commun, 3(1): 1–7.
12.
go back to reference Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T, Dai Z, Cheng Z, Shi E, Yang L, Zhang Z (2016). Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater, 26(13): 2078–2084. CrossRef Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T, Dai Z, Cheng Z, Shi E, Yang L, Zhang Z (2016). Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater, 26(13): 2078–2084. CrossRef
13.
go back to reference Kim SH, Song W, Jung MW, Kang MA, Kim K, Chang SJ, Lee SS, Lim J, Hwang J, Myung S, An KS (2014). Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater, 26: 4247–4252. CrossRef Kim SH, Song W, Jung MW, Kang MA, Kim K, Chang SJ, Lee SS, Lim J, Hwang J, Myung S, An KS (2014). Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater, 26: 4247–4252. CrossRef
14.
go back to reference Shi E, Li H, Yang L, Hou J, Li Y, Li L, Cao A, Fang Y (2015). Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv Mater, 27(4): 682–688. CrossRef Shi E, Li H, Yang L, Hou J, Li Y, Li L, Cao A, Fang Y (2015). Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv Mater, 27(4): 682–688. CrossRef
15.
go back to reference Wang R, Hong T, Xu YQ (2015). Ultrathin single-walled carbon nanotube network framed graphene hybrids. ACS Appl Mater Interfaces, 7(9): 5233–5238. CrossRef Wang R, Hong T, Xu YQ (2015). Ultrathin single-walled carbon nanotube network framed graphene hybrids. ACS Appl Mater Interfaces, 7(9): 5233–5238. CrossRef
16.
go back to reference Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji ARO, Samuel EL, Hauge RH, Yacaman MJ, Tour JM (2014). Rebar graphene. ACS Nano, 8(5): 5061–5068. CrossRef Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji ARO, Samuel EL, Hauge RH, Yacaman MJ, Tour JM (2014). Rebar graphene. ACS Nano, 8(5): 5061–5068. CrossRef
17.
go back to reference Lv R, Cruz-Silva E, Terrones M (2014). Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more. ACS Nano, 8(5): 4061–4069. CrossRef Lv R, Cruz-Silva E, Terrones M (2014). Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more. ACS Nano, 8(5): 4061–4069. CrossRef
18.
go back to reference Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015). Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nature Commun, 6: 8589. CrossRef Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015). Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nature Commun, 6: 8589. CrossRef
19.
go back to reference Zhang TF, Li ZP, Wang JZ, Kong WY, Wu GA, Zheng YZ, Zhao YW, Yao EX, Zhuang NX, Luo LB (2016). Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci Rep, 6: 38569. CrossRef Zhang TF, Li ZP, Wang JZ, Kong WY, Wu GA, Zheng YZ, Zhao YW, Yao EX, Zhuang NX, Luo LB (2016). Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci Rep, 6: 38569. CrossRef
20.
go back to reference Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan XF (2019). Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 364(6445): 1057–1062. CrossRef Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan XF (2019). Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 364(6445): 1057–1062. CrossRef
21.
go back to reference Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan XF, Lee YH (2013). Transferred wrinkled Al 2O 3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nature Mater, 12(5): 403–409. CrossRef Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan XF, Lee YH (2013). Transferred wrinkled Al 2O 3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nature Mater, 12(5): 403–409. CrossRef
22.
go back to reference Seo H, Yun HD, Kwon SY, Bang IC (2016). Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer. Nano Lett, 16(2): 932–938. CrossRef Seo H, Yun HD, Kwon SY, Bang IC (2016). Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer. Nano Lett, 16(2): 932–938. CrossRef
23.
go back to reference Dowgiallo AM, Mistry KS, Johnson JC, Blackburn JL (2014) Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C 60. ACS Nano 8(8): 8573–8581. CrossRef Dowgiallo AM, Mistry KS, Johnson JC, Blackburn JL (2014) Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C 60. ACS Nano 8(8): 8573–8581. CrossRef
24.
go back to reference Pfohl M, Glaser K, Graf A, Mertens A, Tune DD, Puerckhauer T, Alam A, Wei L, Chen Y, Zaumseil J, Colsmann A (2016). Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv Energy Mater, 6(21):1600890. CrossRef Pfohl M, Glaser K, Graf A, Mertens A, Tune DD, Puerckhauer T, Alam A, Wei L, Chen Y, Zaumseil J, Colsmann A (2016). Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv Energy Mater, 6(21):1600890. CrossRef
25.
go back to reference Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J (2019). Absence of charge transfer state enables very low V OC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1): 1801913. CrossRef Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J (2019). Absence of charge transfer state enables very low V OC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1): 1801913. CrossRef
26.
go back to reference Bergemann K, Léonard F (2018). Room-temperature phototransistor with negative photoresponsivity of 10 8 AW -1 using fullerene-sensitized aligned carbon nanotubes. Small, 14: 1802806. CrossRef Bergemann K, Léonard F (2018). Room-temperature phototransistor with negative photoresponsivity of 10 8 AW -1 using fullerene-sensitized aligned carbon nanotubes. Small, 14: 1802806. CrossRef
27.
go back to reference Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang HL, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao ZN (2015). Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C 60 phototransistor. Adv Mater, 27: 759–765. CrossRef Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang HL, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao ZN (2015). Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C 60 phototransistor. Adv Mater, 27: 759–765. CrossRef
28.
go back to reference Qin S, Chen X, Du Q, Nie Z, Wang X, Lu H, Wang X, Liu K, Xu Y, Shi Y, Zhang R, Wang F (2018). Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C 60 hybrid films. ACS Appl Mater Interfaces, 10(44): 38326–38333. CrossRef Qin S, Chen X, Du Q, Nie Z, Wang X, Lu H, Wang X, Liu K, Xu Y, Shi Y, Zhang R, Wang F (2018). Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C 60 hybrid films. ACS Appl Mater Interfaces, 10(44): 38326–38333. CrossRef
29.
go back to reference Chugh S, Adhikari N, Lee JH, Berman D, Echegoyen L, Kaul AB (2019). Dramatic enhancement of optoelectronic properties of electrophoretically deposited C 60-graphene hybrids. ACS Appl Mater Interfaces, 11(27): 24349–24359. CrossRef Chugh S, Adhikari N, Lee JH, Berman D, Echegoyen L, Kaul AB (2019). Dramatic enhancement of optoelectronic properties of electrophoretically deposited C 60-graphene hybrids. ACS Appl Mater Interfaces, 11(27): 24349–24359. CrossRef
30.
go back to reference Qin S, Jiang H, Du Q, Nie Z, Wang X, Wang W, Wang X, Xu Y, Shi Y, Zhang R, Wang F (2019). Planar graphene-C 60-graphene heterostructure for sensitive UV-visible photodetection. Carbon, 146: 486–490. CrossRef Qin S, Jiang H, Du Q, Nie Z, Wang X, Wang W, Wang X, Xu Y, Shi Y, Zhang R, Wang F (2019). Planar graphene-C 60-graphene heterostructure for sensitive UV-visible photodetection. Carbon, 146: 486–490. CrossRef
31.
go back to reference Pan R, Han JY, Zhang XC, Han Q, Zhou HX, Liu XC, Gou J, Jiang YD, Wang J (2020). Excellent performance in vertical graphene-C 60-graphene heterojunction phototransistors with a tunable bi-directionality. Carbon, 162: 375–381. CrossRef Pan R, Han JY, Zhang XC, Han Q, Zhou HX, Liu XC, Gou J, Jiang YD, Wang J (2020). Excellent performance in vertical graphene-C 60-graphene heterojunction phototransistors with a tunable bi-directionality. Carbon, 162: 375–381. CrossRef
32.
go back to reference Yu X, Dong Z, Yang JKW, Wang QJ (2016). Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C 60 hybrid nanostructure. Optica, 3(9): 979–984. CrossRef Yu X, Dong Z, Yang JKW, Wang QJ (2016). Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C 60 hybrid nanostructure. Optica, 3(9): 979–984. CrossRef
33.
go back to reference Yan X, Li B, Li LS (2013). Colloidal graphene quantum dots with well-defined structures. Acc Chem Res, 46(10): 2254–2262. CrossRef Yan X, Li B, Li LS (2013). Colloidal graphene quantum dots with well-defined structures. Acc Chem Res, 46(10): 2254–2262. CrossRef
34.
go back to reference Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, Liu J, Chen P (2019). Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater, 31(21): 1808283. CrossRef Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, Liu J, Chen P (2019). Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater, 31(21): 1808283. CrossRef
35.
go back to reference Lim SY, Shen W, Gao Z (2015). Carbon quantum dots and their applications. Chem Soc Rev, 44(1): 362–381. CrossRef Lim SY, Shen W, Gao Z (2015). Carbon quantum dots and their applications. Chem Soc Rev, 44(1): 362–381. CrossRef
36.
go back to reference Cheng SH, Weng TM, Lu ML, Tan WC, Chen JY, Chen YF (2013). All Carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci Rep, 3: 2694. CrossRef Cheng SH, Weng TM, Lu ML, Tan WC, Chen JY, Chen YF (2013). All Carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci Rep, 3: 2694. CrossRef
37.
go back to reference Tetsuka H (2017). 2D/0D graphene hybrids for visible-blind flexible UV photodetectors. Sci Rep, 7: 5544. CrossRef Tetsuka H (2017). 2D/0D graphene hybrids for visible-blind flexible UV photodetectors. Sci Rep, 7: 5544. CrossRef
38.
go back to reference Tetsuka H, Nagoya A, Tamura SI (2016). Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets. Nanoscale, 8: 19677–19683 CrossRef Tetsuka H, Nagoya A, Tamura SI (2016). Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets. Nanoscale, 8: 19677–19683 CrossRef
39.
go back to reference Fantuzzi P, Candini A, Chen Q, Yao XL, Dumslaff T, Mishra N, Coletti C, Müllen K, Narita A, Affronte M (2019). Color sensitive response of graphene/graphene quantum dot phototransistors. J Phys Chem C, 123(43): 26490–26497. CrossRef Fantuzzi P, Candini A, Chen Q, Yao XL, Dumslaff T, Mishra N, Coletti C, Müllen K, Narita A, Affronte M (2019). Color sensitive response of graphene/graphene quantum dot phototransistors. J Phys Chem C, 123(43): 26490–26497. CrossRef
40.
go back to reference Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH, Hwang E (2015). High-performance graphene-quantum-dot photodetectors. Sci Rep, 4: 5603. Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH, Hwang E (2015). High-performance graphene-quantum-dot photodetectors. Sci Rep, 4: 5603.
41.
go back to reference Haider G. Roy P. Chiang CW. Tan WC. Liou YR. Chang HT. Liang CT. Shih WH. Chen YF (2016). Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater, 26(4): 620–628. CrossRef Haider G. Roy P. Chiang CW. Tan WC. Liou YR. Chang HT. Liang CT. Shih WH. Chen YF (2016). Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater, 26(4): 620–628. CrossRef
42.
go back to reference Lu R, Christianson C, Weintrub B, Wu JZ (2013). High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl Mater Interfaces, 5(22): 11703–11707. CrossRef Lu R, Christianson C, Weintrub B, Wu JZ (2013). High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl Mater Interfaces, 5(22): 11703–11707. CrossRef
43.
go back to reference Rao R, Pierce N, Dasgupta A (2014). On the charge transfer between single-walled carbon nanotubes and graphene. Appl Phys Lett, 105: 073115. Rao R, Pierce N, Dasgupta A (2014). On the charge transfer between single-walled carbon nanotubes and graphene. Appl Phys Lett, 105: 073115.
44.
go back to reference Liu Y, Wang F, Liu Y, Wang X, Xu Y, Zhang R (2016). Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale, 8: 12883–12886. CrossRef Liu Y, Wang F, Liu Y, Wang X, Xu Y, Zhang R (2016). Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale, 8: 12883–12886. CrossRef
45.
go back to reference Cai BF, Yin H, Huo TT, Ma J, Di ZF, Li M, Hu NT, Yang Z, Zhang YF, Su YJ (2020). Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. J. Mater Chem C, 8: 3386–3394. CrossRef Cai BF, Yin H, Huo TT, Ma J, Di ZF, Li M, Hu NT, Yang Z, Zhang YF, Su YJ (2020). Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. J. Mater Chem C, 8: 3386–3394. CrossRef
46.
go back to reference Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef
47.
go back to reference Cao J, Zou Y, Gong X, Gou P, Qian J, Qian R, An Z (2018). Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector. Appl Phys Lett, 113(6): 061112. Cao J, Zou Y, Gong X, Gou P, Qian J, Qian R, An Z (2018). Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector. Appl Phys Lett, 113(6): 061112.
48.
go back to reference Zhou HX, Yang M, Ji CH, Liu XC, Pan R, Han Q, Wang J, Jiang YD (2020). Excellent-performance C 60/graphene/SWCNT heterojunctionwith light-controlled enhancement of photocurrent. ACS Sustainable Chem Eng, 8(10): 4276–4283. CrossRef Zhou HX, Yang M, Ji CH, Liu XC, Pan R, Han Q, Wang J, Jiang YD (2020). Excellent-performance C 60/graphene/SWCNT heterojunctionwith light-controlled enhancement of photocurrent. ACS Sustainable Chem Eng, 8(10): 4276–4283. CrossRef
49.
go back to reference GI Koleilat, M Vosgueritchian, T Lei, Y Zhou, DW Lin, F Lissel, P Lin, JW To, T Xie, K England, Y Zhang, Bao ZN (2016). Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells. ACS Nano, 10(12): 11258–11265. CrossRef GI Koleilat, M Vosgueritchian, T Lei, Y Zhou, DW Lin, F Lissel, P Lin, JW To, T Xie, K England, Y Zhang, Bao ZN (2016). Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells. ACS Nano, 10(12): 11258–11265. CrossRef
50.
go back to reference Dowgiallo AM, Mistry KS, Johnson JC, Reid OG, Blackburn JL (2016). Probing exciton diffusion and dissociation in single-walled carbon nanotube-C 60 heterojunctions. J Phys Chem Lett, 7(10): 1794–1799. CrossRef Dowgiallo AM, Mistry KS, Johnson JC, Reid OG, Blackburn JL (2016). Probing exciton diffusion and dissociation in single-walled carbon nanotube-C 60 heterojunctions. J Phys Chem Lett, 7(10): 1794–1799. CrossRef
51.
go back to reference Liu Y, Liu Y, Qin S, Xu Y, Zhang R, Wang F (2017). Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 10, 1880–1887. CrossRef Liu Y, Liu Y, Qin S, Xu Y, Zhang R, Wang F (2017). Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 10, 1880–1887. CrossRef
Metadata
Title
All-Carbon van der Waals Heterojunction Photodetectors
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_6