Skip to main content
Top
Published in:

21-07-2023

Alloys Based on Orthorhombic Intermetallic Ti2AlNb: Phase Composition, Alloying, Structure, Properties

Authors: A. G. Illarionov, S. L. Demakov, F. V. Vodolazskiy, S. I. Stepanov, S. M. Illarionova, M. A. Shabanov, A. A. Popov

Published in: Metallurgist | Issue 3-4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article analyses data for chemical composition, manufacturing and processing methods for promising heat-resistant alloys based upon orthorhombic titanium intermetallic Ti2AlNb (O-alloys) developed within Russia and abroad. Phase diagrams typical for alloys based upon Ti–Al–Nb and general data for the phases formed in these alloys are provided. Concepts of aluminum and niobium equivalents used for multicomponent alloys are considered. The effect of alloying elements on a combination of mechanical properties of O-alloys, alloying principles, and compositions of the alloys developed are summarized. Characteristics of phase transformations occurring within alloys during heat treatment, including continuous heating and isothermal treatment, are provided. Typical microstructures of the alloys are presented; processing methods for their production and the influence of structural parameters on a combination of properties are described. Methods for manufacturing and processing routes of O-alloys are presented, which provide a good set of properties at room and elevated temperatures, as well as possible operating temperatures for refractory use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Banerjee, A. K. Gogia, T. K. Nandi, and V. A Joshi, “A new ordered orthorhombic phase in a Ti, Al–Nb alloy,” Acta Metall., 36. No. 4, 871–882 (1988).CrossRef D. Banerjee, A. K. Gogia, T. K. Nandi, and V. A Joshi, “A new ordered orthorhombic phase in a Ti, Al–Nb alloy,” Acta Metall., 36. No. 4, 871–882 (1988).CrossRef
2.
go back to reference J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Advanced Engineering Materials, 3, No. 11, 851–864 (2001).CrossRef J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Advanced Engineering Materials, 3, No. 11, 851–864 (2001).CrossRef
3.
go back to reference N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel [in Russian], 2nd ed., VIAM, Moscow (2019). N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel [in Russian], 2nd ed., VIAM, Moscow (2019).
4.
go back to reference N. V. Kazantseva, Materials for High-Speed Transport Systems: Monograph [in Russian], UrGUPS, Ekaterinberg (2016). N. V. Kazantseva, Materials for High-Speed Transport Systems: Monograph [in Russian], UrGUPS, Ekaterinberg (2016).
5.
go back to reference V. A. Duyunova N. A. Nochovnaya, E. B. Alekseev, and V. I. Ivanov, “Study of the effect of alloying and hot deformation on the properties of small stampings of alloys based upon TiAl intermetallic,” Metallurg, No. 8, 83–88 (2020). V. A. Duyunova N. A. Nochovnaya, E. B. Alekseev, and V. I. Ivanov, “Study of the effect of alloying and hot deformation on the properties of small stampings of alloys based upon TiAl intermetallic,” Metallurg, No. 8, 83–88 (2020).
6.
go back to reference S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures: Ref in 2 vol. Book 1 [in Russian], Metallurgiya, Moscow (1991). S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures: Ref in 2 vol. Book 1 [in Russian], Metallurgiya, Moscow (1991).
7.
go back to reference W. Chen, J. W. Li, L. Xu, and B. Lu, “Development of Ti2AlNb alloys: opportunities and challenges,” Advanced Materials & Processes, No. 5, 23–27 (2014). W. Chen, J. W. Li, L. Xu, and B. Lu, “Development of Ti2AlNb alloys: opportunities and challenges,” Advanced Materials & Processes, No. 5, 23–27 (2014).
8.
go back to reference A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties, Reference [in Russian], VILS, Moscow (2009). A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties, Reference [in Russian], VILS, Moscow (2009).
9.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, 122, 448–511 (2017)..CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, 122, 448–511 (2017)..CrossRef
10.
go back to reference J. W. Zhang, “Research and application of Ti3Al and Ti2AlNb based alloys,” The Chinese J. Nonferrous Metals, 20, 336–341 (2010). J. W. Zhang, “Research and application of Ti3Al and Ti2AlNb based alloys,” The Chinese J. Nonferrous Metals, 20, 336–341 (2010).
11.
go back to reference Yu. B. Bykov, N. A. Nochovnaya, V. M. Timokhin, E. B. Alekseev, A. V. Novak, and E. S. Zahareva, “Use of intermetallic titanium ortho-alloy in the construction of high-pressure compressor control equipment,” Élektrometallurgiya, No. 11, 19–26 (2019). Yu. B. Bykov, N. A. Nochovnaya, V. M. Timokhin, E. B. Alekseev, A. V. Novak, and E. S. Zahareva, “Use of intermetallic titanium ortho-alloy in the construction of high-pressure compressor control equipment,” Élektrometallurgiya, No. 11, 19–26 (2019).
12.
go back to reference H. Z. Niu, Y. F. Chen, D. L. Zhang, W. Zhang, and P. X. Zhang, “Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization,” Materials and Design, 89, 823–829 (2016).CrossRef H. Z. Niu, Y. F. Chen, D. L. Zhang, W. Zhang, and P. X. Zhang, “Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization,” Materials and Design, 89, 823–829 (2016).CrossRef
13.
go back to reference Y. H. Zhou, W. P. Li, D. W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, and M. Yan, “Selective laser melting enabled additive manufacturing of Ti22Al25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated,” Acta Materialia, 173, 117–129 (2019).CrossRef Y. H. Zhou, W. P. Li, D. W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, and M. Yan, “Selective laser melting enabled additive manufacturing of Ti22Al25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated,” Acta Materialia, 173, 117–129 (2019).CrossRef
14.
go back to reference I. Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, and A. Popovich, “Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders,” Additive Manufacturing, 34, 101374 (2020).CrossRef I. Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, and A. Popovich, “Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders,” Additive Manufacturing, 34, 101374 (2020).CrossRef
15.
go back to reference Zixiang Li, Yinan Cui, Li Wang, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, and Dong Du, “An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method,” Additive Manufacturing, 59, 102552 (2022).CrossRef Zixiang Li, Yinan Cui, Li Wang, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, and Dong Du, “An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method,” Additive Manufacturing, 59, 102552 (2022).CrossRef
16.
go back to reference C. J. Boehlert, B. S. Majumdar, V. Seetharaman, and D. B. Miracle, “Part I. The Microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys,” Metallurgical And Materials Transactions A, 30A, No. 9, 2305–2323 (1999).CrossRef C. J. Boehlert, B. S. Majumdar, V. Seetharaman, and D. B. Miracle, “Part I. The Microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys,” Metallurgical And Materials Transactions A, 30A, No. 9, 2305–2323 (1999).CrossRef
17.
go back to reference A. V. Novak, E. B. Alekseev, V. I. Ivanov, and D. A. Dzunovich, “Study of the effect of quenching parameters on structure and hardness of intermetallic titanium ortho-alloy VTI-4,” Trudy VIAM, No. 2, 38–46 (2018). A. V. Novak, E. B. Alekseev, V. I. Ivanov, and D. A. Dzunovich, “Study of the effect of quenching parameters on structure and hardness of intermetallic titanium ortho-alloy VTI-4,” Trudy VIAM, No. 2, 38–46 (2018).
18.
go back to reference P. K. Sagar, D. Banerjee, K. Muraleedharan, and Y. V. R. K. Prasad , “High-temperature deformation processing of Ti–24Al–20Nb,” Metallurgical and Materials Transactions A, 27A, No. 9, 2593–2604 (1999).CrossRef P. K. Sagar, D. Banerjee, K. Muraleedharan, and Y. V. R. K. Prasad , “High-temperature deformation processing of Ti–24Al–20Nb,” Metallurgical and Materials Transactions A, 27A, No. 9, 2593–2604 (1999).CrossRef
19.
go back to reference K. Muraleedharan, T. K. Nandy, D. Banerjee, and S. Lele, “Phase stability and ordering behavior of the O phase in Ti–Al–Nb alloys,” Intermetallics, 3, 187–199 (1995).CrossRef K. Muraleedharan, T. K. Nandy, D. Banerjee, and S. Lele, “Phase stability and ordering behavior of the O phase in Ti–Al–Nb alloys,” Intermetallics, 3, 187–199 (1995).CrossRef
20.
go back to reference A. G. Illarionov, S. V. Grib, and A. A. Popov, “Phase transformations in the quenched alloy based on orthorhombic titanium aluminide during heating,” Solid State Phenomena, 316, 473–478 (2021).CrossRef A. G. Illarionov, S. V. Grib, and A. A. Popov, “Phase transformations in the quenched alloy based on orthorhombic titanium aluminide during heating,” Solid State Phenomena, 316, 473–478 (2021).CrossRef
21.
go back to reference B. Wu, M. Zinkevich, F. Aldinger, M. Chu, and J. Shen, “Prediction of the ordering behavior of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation,” Intermetallics, 16, 42–51 (2008).CrossRef B. Wu, M. Zinkevich, F. Aldinger, M. Chu, and J. Shen, “Prediction of the ordering behavior of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation,” Intermetallics, 16, 42–51 (2008).CrossRef
22.
go back to reference C. P. Chang and M. H. Loretto, “The decomposition process of rapidly solidified Ti–25 at.% A1–25 at.% Nb,” Philosophical Magazine A, 63, No. 3, 389–406 (1991).CrossRef C. P. Chang and M. H. Loretto, “The decomposition process of rapidly solidified Ti–25 at.% A1–25 at.% Nb,” Philosophical Magazine A, 63, No. 3, 389–406 (1991).CrossRef
23.
go back to reference A. A. Popov, A. G. Illarionov, S. V. Grib, S. L. Demakov, M. S. Karabanalov, and O. A. Elkina, “Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide,” The Physics Metals and Metallography, 106, No. 4, 399–410 (2008).CrossRef A. A. Popov, A. G. Illarionov, S. V. Grib, S. L. Demakov, M. S. Karabanalov, and O. A. Elkina, “Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide,” The Physics Metals and Metallography, 106, No. 4, 399–410 (2008).CrossRef
24.
go back to reference A. G. Illarionov, A. A., Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal Science and Heat Treatment, 52, No. 9–10, 493–498 (2011). A. G. Illarionov, A. A., Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal Science and Heat Treatment, 52, No. 9–10, 493–498 (2011).
25.
go back to reference L. A. Bendersky and W. J. Boettinger, “Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM study of microstructures,” J. Research National Institute of Standards and Technology, 98, No. 5. 585–606 (1993). L. A. Bendersky and W. J. Boettinger, “Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM study of microstructures,” J. Research National Institute of Standards and Technology, 98, No. 5. 585–606 (1993).
26.
go back to reference D. Banerjee, “The intermetallic Ti2AlNb,” Progress in Materials Science, 42, 135–158 (1997).CrossRef D. Banerjee, “The intermetallic Ti2AlNb,” Progress in Materials Science, 42, 135–158 (1997).CrossRef
27.
go back to reference L. Tretyachenko, “Aluminium–niobium–titanium,” in: Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology (New Ser.), Group IV: Physical Chemistry. “Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT”. Ed. W. Martinsen. Springer-Verlag (2005). L. Tretyachenko, “Aluminium–niobium–titanium,” in: Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology (New Ser.), Group IV: Physical Chemistry. “Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT”. Ed. W. Martinsen. Springer-Verlag (2005).
28.
go back to reference H. T. Kestner-Weykamp, C. H. Ward, T. F. Broderick, and M. J. Kaufman, “Microstructures and phase relationships in the Ti3Al + Nb system,” Scripta Metallurgica, 23, 1697–1702 (1989).CrossRef H. T. Kestner-Weykamp, C. H. Ward, T. F. Broderick, and M. J. Kaufman, “Microstructures and phase relationships in the Ti3Al + Nb system,” Scripta Metallurgica, 23, 1697–1702 (1989).CrossRef
29.
go back to reference A. G Illarionov, S. V. Grib, A. A. Popov, S. L. Demakov, M. S. Karabanalov, O. G. Zhadhieva, and O. A. Elkina, “Effect of hydrogen in formation of structure and phase composition in alloy based upon Ti2AlNb,” Fiz. Metall. Mtealloved., 109, No. 2., 154–164 (2010). A. G Illarionov, S. V. Grib, A. A. Popov, S. L. Demakov, M. S. Karabanalov, O. G. Zhadhieva, and O. A. Elkina, “Effect of hydrogen in formation of structure and phase composition in alloy based upon Ti2AlNb,” Fiz. Metall. Mtealloved., 109, No. 2., 154–164 (2010).
30.
go back to reference S. V. Skvortsova, O. Z. Pozhoga, A. V. Ocghinnikov, and A. A. Orlov, “Effect of thermal hydrogen treatment of production and mechanical properties of heart-resistant intermetallic alloys VTI-4,” Deform. Razrush. Materialov., No. 1, 16–23 (2019). S. V. Skvortsova, O. Z. Pozhoga, A. V. Ocghinnikov, and A. A. Orlov, “Effect of thermal hydrogen treatment of production and mechanical properties of heart-resistant intermetallic alloys VTI-4,” Deform. Razrush. Materialov., No. 1, 16–23 (2019).
31.
go back to reference S. V. Skvortsova, O. Z. Pozhoga, V. A. Pozhoga, and A. E. Ivanov, “Effect of additional alloying with hydrogen on structure and phase composition of intermetallic alloy VTI-4,” Metally, No. 6, 3–13 (2019). S. V. Skvortsova, O. Z. Pozhoga, V. A. Pozhoga, and A. E. Ivanov, “Effect of additional alloying with hydrogen on structure and phase composition of intermetallic alloy VTI-4,” Metally, No. 6, 3–13 (2019).
32.
go back to reference S. V. Skovrtsova, O. N. Grozdeva, S. S. Slezov, and T. G. Yagudin, “Hydrogen technology as an effective production method for controlling the structure, mechanical and production properties of alloys based upon titanium and titanium aluminide,” Titan, No. 4 (54), 49–53 (2016). S. V. Skovrtsova, O. N. Grozdeva, S. S. Slezov, and T. G. Yagudin, “Hydrogen technology as an effective production method for controlling the structure, mechanical and production properties of alloys based upon titanium and titanium aluminide,” Titan, No. 4 (54), 49–53 (2016).
33.
go back to reference O. G. Khadzhieva, A. G. Illarionov, and A. A. Popov, “Effect of hydrogen on structure formation processes and deformation capacity of alloys based upon orthorhombic titanium aluminide,” Titan, No. 4(38), 21–26 (2012). O. G. Khadzhieva, A. G. Illarionov, and A. A. Popov, “Effect of hydrogen on structure formation processes and deformation capacity of alloys based upon orthorhombic titanium aluminide,” Titan, No. 4(38), 21–26 (2012).
34.
go back to reference A. G. Illarionov,O. G. Khadzhieva, and E. D. Merson, “Dehydrogenation during annealing or continuous heating of alloy based upon titanium nitride alloyed with hydrogen,” Metall. Term. Obrab. Metallov., No. 7 (781), 17–22 (2020). A. G. Illarionov,O. G. Khadzhieva, and E. D. Merson, “Dehydrogenation during annealing or continuous heating of alloy based upon titanium nitride alloyed with hydrogen,” Metall. Term. Obrab. Metallov., No. 7 (781), 17–22 (2020).
35.
go back to reference C. Xue, W. D. Zeng, W. Wang, X. B.,Liang, and J. W. Zhang, “Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment,” Mater. Sci. Eng. A, 573, 183–189 (2013). C. Xue, W. D. Zeng, W. Wang, X. B.,Liang, and J. W. Zhang, “Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment,” Mater. Sci. Eng. A, 573, 183–189 (2013).
36.
go back to reference L. Germann, D. Banerjee, J. Y. Guédou, and J. L Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920−924 (2005).CrossRef L. Germann, D. Banerjee, J. Y. Guédou, and J. L Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920−924 (2005).CrossRef
37.
go back to reference Chen Yu-yong, Si Yu-feng, Kong Fan-tao, Liu Zhiguang, and Li Jun-wen, “Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy,” Trans. Nonferrous Met. Soc. China, 16, 316–320 (2006).CrossRef Chen Yu-yong, Si Yu-feng, Kong Fan-tao, Liu Zhiguang, and Li Jun-wen, “Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy,” Trans. Nonferrous Met. Soc. China, 16, 316–320 (2006).CrossRef
38.
go back to reference O. Z. Umarov, Features of Phase Composition and Structure Formation within Heat-Resistant Alloy Based Upon Titanium Intermetallic VTI-4 During Heat and Thermal-Hydrogen Treatment [in Russian], Diss. Cand. Techn. Sci., MAI, Moscow (2017). O. Z. Umarov, Features of Phase Composition and Structure Formation within Heat-Resistant Alloy Based Upon Titanium Intermetallic VTI-4 During Heat and Thermal-Hydrogen Treatment [in Russian], Diss. Cand. Techn. Sci., MAI, Moscow (2017).
39.
go back to reference Y. Zhang, Y. Liu, L. Yu, H. Liang, Y. Huang, and Z. Ma, “Microstructures and tensile properties of Ti2AlNb and Mo modified Ti2AlNb alloys fabricated by hot isostatic pressing,” Mat. Sci. Eng. A, 776, 139043 (2020).CrossRef Y. Zhang, Y. Liu, L. Yu, H. Liang, Y. Huang, and Z. Ma, “Microstructures and tensile properties of Ti2AlNb and Mo modified Ti2AlNb alloys fabricated by hot isostatic pressing,” Mat. Sci. Eng. A, 776, 139043 (2020).CrossRef
41.
go back to reference J. Yang, Q. Cai, Z. Ma, Y. Huang, L. Y. and H. Li, “Effect of W addition on phase transformation and microstructure of powder metallurgic Ti–22Al–25Nb alloys during quenching and furnace cooling,” Chinese J. Aeronaut., 32, 1343–1351 (2019). J. Yang, Q. Cai, Z. Ma, Y. Huang, L. Y. and H. Li, “Effect of W addition on phase transformation and microstructure of powder metallurgic Ti–22Al–25Nb alloys during quenching and furnace cooling,” Chinese J. Aeronaut., 32, 1343–1351 (2019).
42.
go back to reference J. Das, A. K. Gogia, and D. V. V. Satyanarayana, “Effect of iron and nickel impurities on creep and tensile behavior of Ti–24Al–20Nb–0.5Mo alloy,” Mater. Sci. Eng. A, 496, 1–8 (2008.)CrossRef J. Das, A. K. Gogia, and D. V. V. Satyanarayana, “Effect of iron and nickel impurities on creep and tensile behavior of Ti–24Al–20Nb–0.5Mo alloy,” Mater. Sci. Eng. A, 496, 1–8 (2008.)CrossRef
43.
go back to reference E. N. Kablov, N. A. Nocovnaya, P. V. Panin, E. B. Alekseev, and A. V. Novak, “Stucy of the structure and properties of heat-resistant alloy based upon orthorhombic titanium aluminide,” Metariallovedenie, No. 3, 3–10 (2017). E. N. Kablov, N. A. Nocovnaya, P. V. Panin, E. B. Alekseev, and A. V. Novak, “Stucy of the structure and properties of heat-resistant alloy based upon orthorhombic titanium aluminide,” Metariallovedenie, No. 3, 3–10 (2017).
44.
go back to reference A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, Effect of rare earth elements on structure and properties of alloy based upon authorhombic titanium aluminide,” Titan, No. 4 (66), 17–23 (2019). A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, Effect of rare earth elements on structure and properties of alloy based upon authorhombic titanium aluminide,” Titan, No. 4 (66), 17–23 (2019).
45.
go back to reference Q. Cai, M. C., Li, Y. R. Zhang, Y. C. Liu, and H. J. Li, “Precipitation behavior of Widmanstaten O phase associated with interface in aged Ti2AlNb -based alloys,” Mater. Charact., 145, 413–422 (2018). Q. Cai, M. C., Li, Y. R. Zhang, Y. C. Liu, and H. J. Li, “Precipitation behavior of Widmanstaten O phase associated with interface in aged Ti2AlNb -based alloys,” Mater. Charact., 145, 413–422 (2018).
46.
go back to reference X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).CrossRef X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).CrossRef
47.
go back to reference M. S. Oglodkov, V. A. Duyunova, N. A. Nochovnaya, V. I. Ivanov, and L. Yu. Avilochev, “Features of technology for preparing wrought workpieces of intermetallic alloy VIT1 for gas turbine engine components,” Trudy VIAM¸ No. 12, 1–13 (2021). M. S. Oglodkov, V. A. Duyunova, N. A. Nochovnaya, V. I. Ivanov, and L. Yu. Avilochev, “Features of technology for preparing wrought workpieces of intermetallic alloy VIT1 for gas turbine engine components,” Trudy VIAM¸ No. 12, 1–13 (2021).
48.
go back to reference A. V. Zavodov, N. A. Nochovnaya, A. A. Lyakhov, and E. V. Filonova, “Effect of deformation band on the strength of a rolled plate of intermetallic titanium alloy based on Ti–22Al–25Nb system,” Materials Characterization, 180, 111438 (2021).CrossRef A. V. Zavodov, N. A. Nochovnaya, A. A. Lyakhov, and E. V. Filonova, “Effect of deformation band on the strength of a rolled plate of intermetallic titanium alloy based on Ti–22Al–25Nb system,” Materials Characterization, 180, 111438 (2021).CrossRef
49.
go back to reference A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, “Influence of the deformation parameters on the morphology of the strengthening of phase and the mechanical properties of an intermetallic VIT5 titanium alloy,” Russian Metallurgy (Metally), No. 4, 318–324 (2020). A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, “Influence of the deformation parameters on the morphology of the strengthening of phase and the mechanical properties of an intermetallic VIT5 titanium alloy,” Russian Metallurgy (Metally), No. 4, 318–324 (2020).
50.
go back to reference V. S. Salenkov, and A. G. Fridman, RF Patent RU 2375484. Alloy Based Upon Titanium, Publ. 10.12. 2009. Bull. No. 34. V. S. Salenkov, and A. G. Fridman, RF Patent RU 2375484. Alloy Based Upon Titanium, Publ. 10.12. 2009. Bull. No. 34.
51.
go back to reference Hongyu Zhang, Na Yan, Hongyan Liang, and Yongchang Liu, “Phase transformation and microstructure control of Ti2AlNb -based alloys: A review,” J. Materials Science & Technology, 80, 203–216 (2021).CrossRef Hongyu Zhang, Na Yan, Hongyan Liang, and Yongchang Liu, “Phase transformation and microstructure control of Ti2AlNb -based alloys: A review,” J. Materials Science & Technology, 80, 203–216 (2021).CrossRef
52.
go back to reference K. Goyal and N. Sardana, Phase stability and microstructural evolution of Ti2AlNb alloys-a review,” Materials Today: Proc., 41, 951–968 (2021). K. Goyal and N. Sardana, Phase stability and microstructural evolution of Ti2AlNb alloys-a review,” Materials Today: Proc., 41, 951–968 (2021).
54.
go back to reference F. A. Sadi and C. Servant, “On the B2 → O phase transformation in Ti–Al–Nb alloys,” Mater. Sci. Engineering: A, 346, 19–28 (2003).CrossRef F. A. Sadi and C. Servant, “On the B2 → O phase transformation in Ti–Al–Nb alloys,” Mater. Sci. Engineering: A, 346, 19–28 (2003).CrossRef
55.
go back to reference N. V. Kazantseva, S .L. Demakov, and A. A. Popov, “Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation,” The Physics Metals and Metallography, 103, No. 4, 378–387 (2007).CrossRef N. V. Kazantseva, S .L. Demakov, and A. A. Popov, “Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation,” The Physics Metals and Metallography, 103, No. 4, 378–387 (2007).CrossRef
56.
go back to reference K. Muraleedharan, A. K. Gogia, T. K. Nandy, D. Banerjee, and S. Lele, “Transformations in a Ti–24AI–15Nb alloy: Part I. Phase equilibria and microstructure,” Metall. Trans. A, 23A, No. 2, 401–415 (1992).CrossRef K. Muraleedharan, A. K. Gogia, T. K. Nandy, D. Banerjee, and S. Lele, “Transformations in a Ti–24AI–15Nb alloy: Part I. Phase equilibria and microstructure,” Metall. Trans. A, 23A, No. 2, 401–415 (1992).CrossRef
57.
go back to reference Y. Wu, and S. K. Hwang, “O-phase and carbides precipitation in intermetallics based on Ti–Al,” Metals and Materials Intern., No. 7, 191–199 (2001). Y. Wu, and S. K. Hwang, “O-phase and carbides precipitation in intermetallics based on Ti–Al,” Metals and Materials Intern., No. 7, 191–199 (2001).
58.
go back to reference O. G. Zhazhdieva, A. G. Ilarionov, and A. A. Popov, Effect of ageing on the structure and properties of hardened alloy based upon orthorhombic titanium aluminide (Ti2AlNb),” Fiz. Metall. Metalloved, 115, No. 1, 14–22 (2014). O. G. Zhazhdieva, A. G. Ilarionov, and A. A. Popov, Effect of ageing on the structure and properties of hardened alloy based upon orthorhombic titanium aluminide (Ti2AlNb),” Fiz. Metall. Metalloved, 115, No. 1, 14–22 (2014).
59.
go back to reference W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, and X. Liang, “Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition,” Mater. Sci. Eng. A, 662, 120–128 (2016).CrossRef W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, and X. Liang, “Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition,” Mater. Sci. Eng. A, 662, 120–128 (2016).CrossRef
60.
go back to reference S. L. Demakov, E. M. Komolikova, F. V. Vodolazskii, and A. A. Popov, “A Diagram of isothermal decomposition of the β-phase in Ti–22Al–26Nb–0.5Zr–0.4Mo alloy,” Materials Science, 44. No. 3, 374–379 (2008).CrossRef S. L. Demakov, E. M. Komolikova, F. V. Vodolazskii, and A. A. Popov, “A Diagram of isothermal decomposition of the β-phase in Ti–22Al–26Nb–0.5Zr–0.4Mo alloy,” Materials Science, 44. No. 3, 374–379 (2008).CrossRef
61.
go back to reference C. Xue, W. Zeng, B. Xu, X. Lian, J. Zhang, and S. Li, “B2 grain growth and particle pinning effect of Ti–22Al–25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41–47 (2012).CrossRef C. Xue, W. Zeng, B. Xu, X. Lian, J. Zhang, and S. Li, “B2 grain growth and particle pinning effect of Ti–22Al–25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41–47 (2012).CrossRef
62.
go back to reference J. Peng, Y. Mao, S. Li, and X. Sun, “Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys,” Mater. Sci. Eng. A, 299, 75–80 (2001).CrossRef J. Peng, Y. Mao, S. Li, and X. Sun, “Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys,” Mater. Sci. Eng. A, 299, 75–80 (2001).CrossRef
63.
go back to reference M. Hagiwara, S. Emura, A. Araok, B. O. Kong, and F. Tang, “Enhanced mechanical properties of orthorhombic Ti2AlNb based intermetallic alloy,” Met. Mater. Int., No. 9, 265–272 (2003). M. Hagiwara, S. Emura, A. Araok, B. O. Kong, and F. Tang, “Enhanced mechanical properties of orthorhombic Ti2AlNb based intermetallic alloy,” Met. Mater. Int., No. 9, 265–272 (2003).
64.
go back to reference S. Emura, A. Araoka , and M. Hagiwara, “B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy,” Scripta Mater., 48, No. 5, 629–634 (2003).CrossRef S. Emura, A. Araoka , and M. Hagiwara, “B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy,” Scripta Mater., 48, No. 5, 629–634 (2003).CrossRef
65.
go back to reference A. K. Gogia, D. Banerjee, and T. K. Nandy, “Structure, tensile deformation, and fracture of a Ti3Al–Nb alloy,” Metall. Trans. A, 21, 609–625 (1990).CrossRef A. K. Gogia, D. Banerjee, and T. K. Nandy, “Structure, tensile deformation, and fracture of a Ti3Al–Nb alloy,” Metall. Trans. A, 21, 609–625 (1990).CrossRef
66.
go back to reference W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, “Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti–22Al–25Nb (at.%) orthorhombic alloy,” Intermetallics, 56, 79–86 (2015).CrossRef W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, “Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti–22Al–25Nb (at.%) orthorhombic alloy,” Intermetallics, 56, 79–86 (2015).CrossRef
67.
go back to reference Y. Zheng, W. Zeng, D. Li, Q. Zhao, X. Liang, J. Zhang, and X. Ma, “Fracture toughness of the bimodal size lamellar O phase microstructures in Ti–22Al–25Nb (at.%) orthorhombic alloy,” J. Alloys Compd., 709, 511–518 (2017).CrossRef Y. Zheng, W. Zeng, D. Li, Q. Zhao, X. Liang, J. Zhang, and X. Ma, “Fracture toughness of the bimodal size lamellar O phase microstructures in Ti–22Al–25Nb (at.%) orthorhombic alloy,” J. Alloys Compd., 709, 511–518 (2017).CrossRef
68.
go back to reference W. Wei, Z. Weidon.,X. Chen, L. Xiaobo, and Z. Jianwei, “Designed bimodal size lamellar O microstructures in Ti2AlNb based (alloy): Microstructural evolution, tensile and creep properties,” Mater. Sci. Eng. A, 618, 288–294 (2014). W. Wei, Z. Weidon.,X. Chen, L. Xiaobo, and Z. Jianwei, “Designed bimodal size lamellar O microstructures in Ti2AlNb based (alloy): Microstructural evolution, tensile and creep properties,” Mater. Sci. Eng. A, 618, 288–294 (2014).
69.
go back to reference C. J. Boehlert, “Part III. The tensile behavior of Ti–Al–Nb O + Bcc orthorhombic alloys,” Metall Mater Trans. A, 32, 1977–1988 (2001).CrossRef C. J. Boehlert, “Part III. The tensile behavior of Ti–Al–Nb O + Bcc orthorhombic alloys,” Metall Mater Trans. A, 32, 1977–1988 (2001).CrossRef
70.
go back to reference C .J. Cowen and C. J. Boehlert, “Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic + B2 alloy,” Intermetallics, 14, 412–422 (2006).CrossRef C .J. Cowen and C. J. Boehlert, “Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic + B2 alloy,” Intermetallics, 14, 412–422 (2006).CrossRef
71.
go back to reference W. Wang, W. Zeng, Y. Liu, G. Xie, and X. Liang, “Microstructural and mechanical properties of Ti22Al-25Nb (At.%) evolution orthorhombic alloy with three typical microstructures,” J. Mater Eng. Perform., 27, 293–301 (2018).CrossRef W. Wang, W. Zeng, Y. Liu, G. Xie, and X. Liang, “Microstructural and mechanical properties of Ti22Al-25Nb (At.%) evolution orthorhombic alloy with three typical microstructures,” J. Mater Eng. Perform., 27, 293–301 (2018).CrossRef
72.
go back to reference C. Xue, W. D. Zeng, W. Wang, X. B. Liang, and J. W. Zhang, “Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti–22Al–25Nb alloy,” Mater. Sci. Eng. A, 611, 320–327 (2014).CrossRef C. Xue, W. D. Zeng, W. Wang, X. B. Liang, and J. W. Zhang, “Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti–22Al–25Nb alloy,” Mater. Sci. Eng. A, 611, 320–327 (2014).CrossRef
73.
go back to reference G. A. Salishchev, R. M. Imayev, V. M. Imayev, M. R. Shagiev, and F. H. Sam Froes. “Formation of submicrocrystalline structure in titanium aluminides and their mechanical properties,” Solid State Phenomena, 114, 29–38 (2006). G. A. Salishchev, R. M. Imayev, V. M. Imayev, M. R. Shagiev, and F. H. Sam Froes. “Formation of submicrocrystalline structure in titanium aluminides and their mechanical properties,” Solid State Phenomena, 114, 29–38 (2006).
74.
go back to reference M. R. Shagiev and G. A. Salishchev, “Microstructure and mechanical properties of nanostructured intermetallic alloy based on Ti2AlNb,” Materials Science Forum, 584–586 Part 1, 153–158 (2008). M. R. Shagiev and G. A. Salishchev, “Microstructure and mechanical properties of nanostructured intermetallic alloy based on Ti2AlNb,” Materials Science Forum, 584–586 Part 1, 153–158 (2008).
75.
go back to reference S. J. Qu, A. H. Feng, M. R. Shagiev, H. Xie, B. B. Li, and J. Shen, “Superplastic behavior of the fine-grained Ti–21Al–18Nb1Mo–2V–0.3Si intermetallic alloy,” Letters on Materials, 8, 567–571 (2018).CrossRef S. J. Qu, A. H. Feng, M. R. Shagiev, H. Xie, B. B. Li, and J. Shen, “Superplastic behavior of the fine-grained Ti–21Al–18Nb1Mo–2V–0.3Si intermetallic alloy,” Letters on Materials, 8, 567–571 (2018).CrossRef
76.
go back to reference S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, “Effect of initial microstructures on hot deformation behavior and workability of Ti2AlNb -based alloy,” Metals, No. 8, 382–342 (2018).CrossRef S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, “Effect of initial microstructures on hot deformation behavior and workability of Ti2AlNb -based alloy,” Metals, No. 8, 382–342 (2018).CrossRef
77.
go back to reference K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: A Rev.,” Trans Indian Inst Met., 74, No. 8, 1839–1853 (2021).CrossRef K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: A Rev.,” Trans Indian Inst Met., 74, No. 8, 1839–1853 (2021).CrossRef
78.
go back to reference V. I. Ivanov, and N. A. Nochovnaya, “Prospects of using heart-resistant materials based upon titanium aluminides,” Titan, No. 1, 44-48 (2007). V. I. Ivanov, and N. A. Nochovnaya, “Prospects of using heart-resistant materials based upon titanium aluminides,” Titan, No. 1, 44-48 (2007).
79.
go back to reference I. S. Pol’kin, O. N. Grebenok, and V. S. Salenkov, “Intermetallics based upon titanium,” Tekhnol Legkih Splavov, No. 2, 5–15 (2010). I. S. Pol’kin, O. N. Grebenok, and V. S. Salenkov, “Intermetallics based upon titanium,” Tekhnol Legkih Splavov, No. 2, 5–15 (2010).
80.
go back to reference O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems, and prospects of creating heat-resistant titanium alloys for GTE components,” Trudy VIAM, No. 3, 1–9 (2013). O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems, and prospects of creating heat-resistant titanium alloys for GTE components,” Trudy VIAM, No. 3, 1–9 (2013).
81.
go back to reference S. V. Skvortsova, A. A. Il’in, A. M. Mamonov, N. A. Nochovnaya, and O. Z. Umarova, “Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb,” Materials Science, 51, No. 6, 821–826 (2016). S. V. Skvortsova, A. A. Il’in, A. M. Mamonov, N. A. Nochovnaya, and O. Z. Umarova, “Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb,” Materials Science, 51, No. 6, 821–826 (2016).
82.
go back to reference Y. H. Zhou, D. W. Wang, L. J. Song, A. Mukhtar, D. N. Huang, C. Yang, and M. Yan, “Effect of heat treatments on the microstructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting,” Materials Science & Engineering A, 817, 141352 (2021).CrossRef Y. H. Zhou, D. W. Wang, L. J. Song, A. Mukhtar, D. N. Huang, C. Yang, and M. Yan, “Effect of heat treatments on the microstructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting,” Materials Science & Engineering A, 817, 141352 (2021).CrossRef
83.
go back to reference X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).CrossRef X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).CrossRef
84.
go back to reference K.-H. Sim, G. Wang, T.-J. Kim, and K.-S. Ju, “Fabrication of a high strength and ductility Ti–22Al–25Nb alloy from high energy ball-milled powder by spark plasma sintering,” J. Alloys and Compounds, 741, 1112–1120 (2018).CrossRef K.-H. Sim, G. Wang, T.-J. Kim, and K.-S. Ju, “Fabrication of a high strength and ductility Ti–22Al–25Nb alloy from high energy ball-milled powder by spark plasma sintering,” J. Alloys and Compounds, 741, 1112–1120 (2018).CrossRef
Metadata
Title
Alloys Based on Orthorhombic Intermetallic Ti2AlNb: Phase Composition, Alloying, Structure, Properties
Authors
A. G. Illarionov
S. L. Demakov
F. V. Vodolazskiy
S. I. Stepanov
S. M. Illarionova
M. A. Shabanov
A. A. Popov
Publication date
21-07-2023
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01518-z

Other articles of this Issue 3-4/2023

Metallurgist 3-4/2023 Go to the issue

Premium Partners