Skip to main content
Top
Published in:

01-12-2016 | Original Article

Alpha-anonymization techniques for privacy preservation in social networks

Authors: Saptarshi Chakraborty, B. K. Tripathy

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rapid growth and development of social networks has attracted the interest of the scientific community to utilize these huge datasets for research purpose. However, preserving the privacy of the users in the published data has also become an important concern. An adversary with very little background knowledge about the actors can extract personal information from the published data. To prevent such type of attacks, different anonymization models have been proposed for relational micro-data, which are further extended and adjusted to handle social network data. Preserving the structural properties of the raw graph is one of the most important aspects of social network anonymization. In this paper, we propose an (α, k) anonymity model based on the eigenvector centrality of the nodes present in the raw graph. We further extend the (α, k) anonymity model to propose (α, l) diversity model and (α, c, l) diversity model, which can also protect the sensitive attribute values associated with a particular actor. For anonymization purpose, we applied the noise node addition technique to generate the anonymized graphs. We tested our proposed algorithms with both synthetic dataset and real dataset. The results obtained show the effectiveness of our proposed algorithm in preserving the structural property of the raw graph. Our proposed methods add noise nodes efficiently so that they have minimal social importance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhagat S, Cormode G, Krishnamurthy B, Srivastava D (2009) Class-based graph anonymization for social network data. Proc VLDB Endow 2(1):766–777CrossRef Bhagat S, Cormode G, Krishnamurthy B, Srivastava D (2009) Class-based graph anonymization for social network data. Proc VLDB Endow 2(1):766–777CrossRef
go back to reference Bonacich P (1972) Factoring and weighting approaches to clique identification. J Math Soc 2:113–120CrossRef Bonacich P (1972) Factoring and weighting approaches to clique identification. J Math Soc 2:113–120CrossRef
go back to reference Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29:555–564CrossRef Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29:555–564CrossRef
go back to reference Campan A, Truta TM (2008) A clustering approach for data and structural anonymity in social networks proceedings of the second ACM SIGKDD international workshop on privacy, security, and trust in KDD (PinKDD’08) Campan A, Truta TM (2008) A clustering approach for data and structural anonymity in social networks proceedings of the second ACM SIGKDD international workshop on privacy, security, and trust in KDD (PinKDD’08)
go back to reference Campan A, Truta TM, Cooper N (2010) P-sensitive k-anonymity with generalization constraints. Trans Data Priv 2:65–89MathSciNet Campan A, Truta TM, Cooper N (2010) P-sensitive k-anonymity with generalization constraints. Trans Data Priv 2:65–89MathSciNet
go back to reference Chakraborty S, Tripathy BK (2015) Privacy preservation in social networks through alpha–anonymization techniques. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2015), pp 1063–1064 Chakraborty S, Tripathy BK (2015) Privacy preservation in social networks through alpha–anonymization techniques. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2015), pp 1063–1064
go back to reference Cheng J, Fu AWC, Liu J (2010) k-isomorphism: privacy preserving network publication against structural attacks. In: Proceedings international conference management of data, pp 459–470 Cheng J, Fu AWC, Liu J (2010) k-isomorphism: privacy preserving network publication against structural attacks. In: Proceedings international conference management of data, pp 459–470
go back to reference Cormode G, Srivastava D, Yu T, Zhang Q (2008) Anonymizing bipartite graph data using safe groupings. Proc VLDB Endow 1(1):833–844CrossRef Cormode G, Srivastava D, Yu T, Zhang Q (2008) Anonymizing bipartite graph data using safe groupings. Proc VLDB Endow 1(1):833–844CrossRef
go back to reference Frikken KB, Golle P (2006) Private social network analysis: how to assemble pieces of a graph privately. In: Proceedings of the fifth ACM workshop privacy in electronic Society (WPES’06), pp 89–98 Frikken KB, Golle P (2006) Private social network analysis: how to assemble pieces of a graph privately. In: Proceedings of the fifth ACM workshop privacy in electronic Society (WPES’06), pp 89–98
go back to reference Hay M, Miklau G, Jensen D, Towsley D, Weis D (2008) Resisting structural re-identification in anonymized social networks. Proc VLDB Endow 1:102–114CrossRef Hay M, Miklau G, Jensen D, Towsley D, Weis D (2008) Resisting structural re-identification in anonymized social networks. Proc VLDB Endow 1:102–114CrossRef
go back to reference Li N, Li T (2007) T-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the IEEE 23rd international conference data engineering (ICDE’07), pp 106–115 Li N, Li T (2007) T-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the IEEE 23rd international conference data engineering (ICDE’07), pp 106–115
go back to reference Liu k, Terzi E (2008) Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD international conference management of data (SIGMOD’08), pp 93–106 Liu k, Terzi E (2008) Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD international conference management of data (SIGMOD’08), pp 93–106
go back to reference Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) l-Diversity: privacy beyond k-anonymity. ACM Trans Knowl Discov Data 1:3CrossRef Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) l-Diversity: privacy beyond k-anonymity. ACM Trans Knowl Discov Data 1:3CrossRef
go back to reference Narayanan A, Shmatikov V (2009) De-anonymizing social networks. In: Proceedings of the IEEE 30th symposium on security and privacy, pp 173–187 Narayanan A, Shmatikov V (2009) De-anonymizing social networks. In: Proceedings of the IEEE 30th symposium on security and privacy, pp 173–187
go back to reference Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3): 036104 Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3): 036104
go back to reference Shrivastava N, Majumder A, Rastogi R (2008) Mining (social) network graphs to detect random link attacks. In: Proceedings of the IEEE 24th international conference on data engineering (ICDE’08), pp 486–495 Shrivastava N, Majumder A, Rastogi R (2008) Mining (social) network graphs to detect random link attacks. In: Proceedings of the IEEE 24th international conference on data engineering (ICDE’08), pp 486–495
go back to reference Wong RC, Li J, Fu AW, Wang K (2006) (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing, Proceedings of the ACM SIGKDD, pp 754–759 Wong RC, Li J, Fu AW, Wang K (2006) (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing, Proceedings of the ACM SIGKDD, pp 754–759
go back to reference Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: Proceedings of the eighth SIAM conference data mining (SDM’08) Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: Proceedings of the eighth SIAM conference data mining (SDM’08)
go back to reference Yuan M, Chen L, Yu PS, Yu T (2013) Protecting sensitive labels in social network data anonymization. IEEE Trans Knowl Data Eng 25(3):633–647CrossRef Yuan M, Chen L, Yu PS, Yu T (2013) Protecting sensitive labels in social network data anonymization. IEEE Trans Knowl Data Eng 25(3):633–647CrossRef
go back to reference Zheleva E, Getoor L (2007) Preserving the privacy of sensitive relationships in graph data. In: Proceedings of the first SIGKDD international workshop privacy, security, and trust in KDD (PinKDD’07), pp 153–171 Zheleva E, Getoor L (2007) Preserving the privacy of sensitive relationships in graph data. In: Proceedings of the first SIGKDD international workshop privacy, security, and trust in KDD (PinKDD’07), pp 153–171
go back to reference Zheleva E, Getoor L (2009) To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the 18th international conference World Wide Web (WWW’09), pp 531–540 Zheleva E, Getoor L (2009) To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the 18th international conference World Wide Web (WWW’09), pp 531–540
go back to reference Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In: Proceedings of the IEEE 24th international conference data engineering (ICDE’08), pp 506–515 Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In: Proceedings of the IEEE 24th international conference data engineering (ICDE’08), pp 506–515
go back to reference Zhou B, Pei J (2011) The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl Inf Syst 28:47–77CrossRef Zhou B, Pei J (2011) The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl Inf Syst 28:47–77CrossRef
Metadata
Title
Alpha-anonymization techniques for privacy preservation in social networks
Authors
Saptarshi Chakraborty
B. K. Tripathy
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0337-x

Premium Partner