Skip to main content
Top

2019 | OriginalPaper | Chapter

5. AlSi10Mg Nanocomposites Prepared by DMLS Using In-Situ CVD Growth of CNTs: Process Effects and Mechanical Characterization

Authors : P. Thompson, R. Poveda, I. Bezsonov, M. Rossini, D. Orthner, K. Cobb, B. Leng, Z. Iqbal

Published in: Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon Nanotube (CNT) reinforced AlSi10Mg Metal Matrix Composites (MMCs) were fabricated through direct metal laser sintering (DMLS), and select mechanical properties were compared to those of virgin DMLS AlSi10Mg. The MMCs were prepared by initially depositing CNTs homogeneously on the bulk AlSi10Mg powder through the chemical vapor deposition (CVD) process. The CNT-reinforced AlSi10Mg (CNT-Al MMC) powder was then fused together through DMLS using an EOS M290 additive manufacturing printer. Virgin AlSi10Mg powder was processed as a separate build via DMLS for baseline comparison. Scanning Electron Microscopy was conducted and material property characterization was performed to observe surface morphology, microstructure and mechanical property variation of these materials. Further analysis via Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy revealed homogeneously distributed voids within the microstructure of the CNT-Al MMC and large quantities of oxygen near these voids. The growth of CNTs directly onto powder particulates, via CVD, allows for the uniform distribution of reinforcement, which is critical to cohesive 3D printed builds. However, this process requires refinement to limit the presence of excess oxygen, which can cause microstructural defects, thereby hindering the reinforcing capabilities of CNTs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kempen, K., Thijs, L., Humbeeck, J.V., Kruth, J.P.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Proc. 39, 439–446 (2012)CrossRef Kempen, K., Thijs, L., Humbeeck, J.V., Kruth, J.P.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Proc. 39, 439–446 (2012)CrossRef
2.
go back to reference Mower, T., Long, M.: Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A. 651, 198–213 (2016)CrossRef Mower, T., Long, M.: Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A. 651, 198–213 (2016)CrossRef
3.
go back to reference Rosenthal, I., Stern, A., Frage, N.: Strain rate sensitivity and fracture mechanisms of AlSi10Mg parts produced by selective laser melting. Mater. Sci. Eng. A. 682, 509–517 (2017)CrossRef Rosenthal, I., Stern, A., Frage, N.: Strain rate sensitivity and fracture mechanisms of AlSi10Mg parts produced by selective laser melting. Mater. Sci. Eng. A. 682, 509–517 (2017)CrossRef
4.
go back to reference Kwon, H., Estili, M.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 47, 570–577 (2009)CrossRef Kwon, H., Estili, M.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 47, 570–577 (2009)CrossRef
5.
go back to reference Kim, K.T., Cha, S.I., Hong, S.H., Hong, S.H.: Microstructure and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A. 430, 27–33 (2006)CrossRef Kim, K.T., Cha, S.I., Hong, S.H., Hong, S.H.: Microstructure and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A. 430, 27–33 (2006)CrossRef
6.
go back to reference Lahiri, D., Bakshi, S., Keshri, A., Liu, Y., Agarwal, A.: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng. A. 523(1–2), 263–270 (2009)CrossRef Lahiri, D., Bakshi, S., Keshri, A., Liu, Y., Agarwal, A.: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng. A. 523(1–2), 263–270 (2009)CrossRef
7.
go back to reference Patel, R.B., Liu, J., Scicolone, J.V., Roy, S., Mitra, S., Dave, R.N., Iqbal, Z.: Formation of stainless steel–carbon nanotube composites using a scalable chemical vapor infiltration process. J. Mater. Sci. 48(3), 1387–1395 (2013)CrossRef Patel, R.B., Liu, J., Scicolone, J.V., Roy, S., Mitra, S., Dave, R.N., Iqbal, Z.: Formation of stainless steel–carbon nanotube composites using a scalable chemical vapor infiltration process. J. Mater. Sci. 48(3), 1387–1395 (2013)CrossRef
8.
go back to reference Wang, P., Zhang, B., Tan, C., Raghavan, S., Lim, Y., Sun, C., Wei, J., Chi, D.: Microstructural characteristics and mechanical properties of carbon nanotube reinforced inconel 625 parts fabricated by selective laser melting. Mater. Des. 112, 290–299 (2016)CrossRef Wang, P., Zhang, B., Tan, C., Raghavan, S., Lim, Y., Sun, C., Wei, J., Chi, D.: Microstructural characteristics and mechanical properties of carbon nanotube reinforced inconel 625 parts fabricated by selective laser melting. Mater. Des. 112, 290–299 (2016)CrossRef
9.
go back to reference Fulcher, B., Leigh, D., Watt, T.: Comparison of AlSi10Mg and Al 6061 processed through DMLS. In: Solid Freeform Fabrication Symposium, Austin (2014) Fulcher, B., Leigh, D., Watt, T.: Comparison of AlSi10Mg and Al 6061 processed through DMLS. In: Solid Freeform Fabrication Symposium, Austin (2014)
10.
go back to reference ASTM International: ASTM E8 / E8M – 16a – Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken (2016) ASTM International: ASTM E8 / E8M – 16a – Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken (2016)
11.
go back to reference Dieter, G.E.: Mechanical Metallurgy. McGraw Hill, London (1988) Dieter, G.E.: Mechanical Metallurgy. McGraw Hill, London (1988)
12.
go back to reference White, C.M., Banks, R., Hamerton, I., Watts, J.F.: Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog. Org. Coat. 90, 44–53 (2016)CrossRef White, C.M., Banks, R., Hamerton, I., Watts, J.F.: Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog. Org. Coat. 90, 44–53 (2016)CrossRef
Metadata
Title
AlSi10Mg Nanocomposites Prepared by DMLS Using In-Situ CVD Growth of CNTs: Process Effects and Mechanical Characterization
Authors
P. Thompson
R. Poveda
I. Bezsonov
M. Rossini
D. Orthner
K. Cobb
B. Leng
Z. Iqbal
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95510-0_5

Premium Partners