Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-09-2014 | Original Article | Issue 6/2014

Environmental Earth Sciences 6/2014

Alteration kinetics of natural stones due to sodium sulfate crystallization: can reality match experimental simulations?

Journal:
Environmental Earth Sciences > Issue 6/2014
Authors:
Teresa Diaz Gonçalves, Vânia Brito
Important notes

Electronic supplementary material

The online version of this article (doi:10.​1007/​s12665-014-3085-0) contains supplementary material, which is available to authorized users.

Abstract

Salt decay is a very destructive mechanism that affects frequently the porous building materials of our architectural heritage. Sodium sulfate is one of the salts found in this context. It usually demonstrates high destructive power in salt crystallization tests because it can crystallize not only during evaporative processes but also when the temperature drops or when the salt solution comes into contact with pre-existing crystals. However, the use of extreme temperatures or successive wet/dry cycles also makes these tests unrepresentative of reality. To verify whether sodium sulfate can also be so destructive in field conditions, we have performed crystallization tests consisting of a single isothermal drying event. Three natural stones, relevant for the architectural heritage, were used for the purpose: Bentheimer sandstone, Ançã limestone, and a current Portuguese limestone of low porosity. The stones gave rise to distinct salt decay patterns: efflorescence, multilayer delamination and unilayer delamination, respectively. These morphological alterations were characterized at the micrometer scale by a new method based on what we have called the alteration kinetics curve. Such curve is calculated from topographic profiles obtained by a non-contact optical technique. The multilayer and unilayer delamination decay were also monitored by time-lapse photography. The work led us to conclude that sodium sulfate can indeed be also very destructive in field-representative conditions. Moreover, it showed that the optical method can be a valuable aid in the development of more realistic salt crystallization tests.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6/2014

Environmental Earth Sciences 6/2014 Go to the issue