Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Aluminized Solid Propellants Loaded with Metals and Metal Oxides: Characterization, Thermal Behavior, and Combustion

Authors : Alexander A. Gromov, Konstantin V. Slusarsky, Alexey V. Sergienko, Elena M. Popenko, Ella L. Dzidziguri, Kirill B. Larionov, Ilya V. Mishakov

Published in: Innovative Energetic Materials: Properties, Combustion Performance and Application

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the combustion behavior of multicomponent aluminized propellants loaded with different metals and metal oxides (in particular, B, Zn, Ni, Cu, Mo, Co3O4, V2O5, MnO2, Fe2O3, and CuO) are described. The correlation between properties of propellant composition and components and regularities of burning process are presented for formulations based on mixture of HMX, CL-20, and ammonium perchlorate. The burning law was defined experimentally by means of Vielle bomb over the pressure range 1–10 MPa, while some combustion properties were obtained theoretically. The effects of metal powder chemical and phase composition on burning law were considered as well as their oxidation reactivity, morphological, and the other properties. The most significant increasing of burning rate was observed for substances promoting catalytic propellant components decomposition with nearly constant thermodynamic properties. Thus, addition of metal and metal oxide could be effective way to adjust burning rate of propellants without affecting its ballistic properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chaturvedi S, Dave PN (2012) Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J Exp Nanosci 7(2):205–231CrossRef Chaturvedi S, Dave PN (2012) Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J Exp Nanosci 7(2):205–231CrossRef
2.
go back to reference Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838CrossRef Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(2):1819–1838CrossRef
3.
go back to reference Gromov A, Deluca LT, Il’ In AP, Teipel U, Petrova A, Prokopiev D (2014) Nanometals in energetic systems: achievements and future. Int J Energ Mater Chem Propuls 13(5):399–419 Gromov A, Deluca LT, Il’ In AP, Teipel U, Petrova A, Prokopiev D (2014) Nanometals in energetic systems: achievements and future. Int J Energ Mater Chem Propuls 13(5):399–419
4.
go back to reference Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S, DeLuca LT (2016) Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci 57:75–136 Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S, DeLuca LT (2016) Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci 57:75–136
5.
go back to reference Li F, Jiang W, Liu J, Guo X, Wang Y, Hao G (2010) Applications of nanocatalysts in solid rocket propellants. In: Energetic nanomaterials. Elsevier, pp 95–120 Li F, Jiang W, Liu J, Guo X, Wang Y, Hao G (2010) Applications of nanocatalysts in solid rocket propellants. In: Energetic nanomaterials. Elsevier, pp 95–120
6.
go back to reference De Luca LT et al (2014) Characterization and combustion of aluminum nanopowders in energetic systems. In: Metal nanopowders. Wiley-VCH, pp 301–410 De Luca LT et al (2014) Characterization and combustion of aluminum nanopowders in energetic systems. In: Metal nanopowders. Wiley-VCH, pp 301–410
7.
go back to reference E XTFE, Zhang L, Wang F, Zhang X, Zou JJ (2018) Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Front Chem Sci Eng 12(3):358–366 E XTFE, Zhang L, Wang F, Zhang X, Zou JJ (2018) Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Front Chem Sci Eng 12(3):358–366
8.
go back to reference Yu N, Zhao B, Li J (2013) A new hybrid-rocket-based combined-cycle propulsion system concept. Proc Int Astronaut Congr IAC 10:7729–7736 Yu N, Zhao B, Li J (2013) A new hybrid-rocket-based combined-cycle propulsion system concept. Proc Int Astronaut Congr IAC 10:7729–7736
9.
go back to reference Provatidis C, Tsiriggakis VA (2019) New concept and design aspects of an ‘Antigravity’ propulsion mechanism based on inertial forces. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p 2019 Provatidis C, Tsiriggakis VA (2019) New concept and design aspects of an ‘Antigravity’ propulsion mechanism based on inertial forces. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p 2019
10.
go back to reference Felber FS (2006) Exact relativistic ‘Antigravity’ propulsion. In: AIP conference proceedings, vol 813. pp 1374–1381 Felber FS (2006) Exact relativistic ‘Antigravity’ propulsion. In: AIP conference proceedings, vol 813. pp 1374–1381
11.
go back to reference Pivkina AN, Muravyev NV, Monogarov KA, Fomenkov IV, Schoonman J (2016) Catalysis of HMX decomposition and combustion: defect chemistry approach. Elsevier Inc Pivkina AN, Muravyev NV, Monogarov KA, Fomenkov IV, Schoonman J (2016) Catalysis of HMX decomposition and combustion: defect chemistry approach. Elsevier Inc
12.
go back to reference Zarko V, Gromov A (2016) Energetic nanomaterials: synthesis, characterization, and application. In: Energetic nanomaterials. Elsevier, p.iii Zarko V, Gromov A (2016) Energetic nanomaterials: synthesis, characterization, and application. In: Energetic nanomaterials. Elsevier, p.iii
13.
go back to reference Gottfried JL, Smith DK, Wu CC, Pantoya ML (2018) Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci Rep 8(1):1–12 Gottfried JL, Smith DK, Wu CC, Pantoya ML (2018) Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci Rep 8(1):1–12
14.
go back to reference Arkhipov VA et al (2012) Influence of aluminum particle size on ignition and nonstationary combustion of heterogeneous condensed systems. Combust Explos Shock Waves 48(5):625–635 Arkhipov VA et al (2012) Influence of aluminum particle size on ignition and nonstationary combustion of heterogeneous condensed systems. Combust Explos Shock Waves 48(5):625–635
15.
go back to reference Jiang Z et al (2006) Research on the combustion properties of propellants with low content of nano metal powders. Propellants Explos Pyrotech 31(2):139–147 Jiang Z et al (2006) Research on the combustion properties of propellants with low content of nano metal powders. Propellants Explos Pyrotech 31(2):139–147
16.
go back to reference Gao JM, Wang L, Yu HJ, Xiao AG, Ding WB (2011) Recent research progress in burning rate catalysts. Propellants Explos Pyrotech 36(5):404–409 Gao JM, Wang L, Yu HJ, Xiao AG, Ding WB (2011) Recent research progress in burning rate catalysts. Propellants Explos Pyrotech 36(5):404–409
17.
go back to reference Stephens MA, Petersen EL, Reid DL, Carro R, Seal S (2009) Nano additives and plateau burning rates of ammoniumperchlorate-based composite solid propellants. J Propuls Power 25(5):1068–1078 Stephens MA, Petersen EL, Reid DL, Carro R, Seal S (2009) Nano additives and plateau burning rates of ammoniumperchlorate-based composite solid propellants. J Propuls Power 25(5):1068–1078
18.
go back to reference Fu XL, Fan XZ, Li JZ, Liu XG, Zhang LY (2008) Effect of organic lead salts on combustion characteristics and thermal decomposition of high energy modified double base propellants. Chinese J Explos Propellants 31(2):49–52 Fu XL, Fan XZ, Li JZ, Liu XG, Zhang LY (2008) Effect of organic lead salts on combustion characteristics and thermal decomposition of high energy modified double base propellants. Chinese J Explos Propellants 31(2):49–52
19.
go back to reference Li J, Gao X, Shao E, Zhang G (2017) Synthesis, Characterization and Migration of Ionic Polyferrocenyl Compounds of 5-Ferrocenyl-1H-tetrazole and Their Effects During Combustion. Zeitschrift fur Anorg und Allg Chemie 643(6):455–463CrossRef Li J, Gao X, Shao E, Zhang G (2017) Synthesis, Characterization and Migration of Ionic Polyferrocenyl Compounds of 5-Ferrocenyl-1H-tetrazole and Their Effects During Combustion. Zeitschrift fur Anorg und Allg Chemie 643(6):455–463CrossRef
20.
go back to reference Gao X et al (2016) Ferrocenyl ionic compounds based on 5-Ferrocenyl-1H-tetrazole. synthesis, characterization, migration, and catalytic effects during combustion. Zeitschrift fur Anorg und Allg Chemie 642(2):155–162CrossRef Gao X et al (2016) Ferrocenyl ionic compounds based on 5-Ferrocenyl-1H-tetrazole. synthesis, characterization, migration, and catalytic effects during combustion. Zeitschrift fur Anorg und Allg Chemie 642(2):155–162CrossRef
21.
go back to reference Han ZW, Wang D, Wang HY, Henkes C (2016) Electrospray formation of RDX/ceria mixture and its thermal decomposition performance. J Therm Anal Calorim 123(1):449–455CrossRef Han ZW, Wang D, Wang HY, Henkes C (2016) Electrospray formation of RDX/ceria mixture and its thermal decomposition performance. J Therm Anal Calorim 123(1):449–455CrossRef
22.
go back to reference Gromov AA, Förter-Barth U, Teipel U (2006) Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water. Powder Technol 164(2):111–115CrossRef Gromov AA, Förter-Barth U, Teipel U (2006) Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water. Powder Technol 164(2):111–115CrossRef
23.
go back to reference Jiang Z, Li SF, Zhao FQ, Chen P, Yin CM, Li SW (2002) Effect of nano metal powder on the thermal decomposition characteristics of HMX. J Propuls Technol 23(3):258–261 Jiang Z, Li SF, Zhao FQ, Chen P, Yin CM, Li SW (2002) Effect of nano metal powder on the thermal decomposition characteristics of HMX. J Propuls Technol 23(3):258–261
24.
go back to reference Kohga M (2017) Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin–based composite propellants supplemented with MnO2 and Fe2O3. Propellants Explos Pyrotech 42(6):665–670 Kohga M (2017) Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin–based composite propellants supplemented with MnO2 and Fe2O3. Propellants Explos Pyrotech 42(6):665–670
25.
go back to reference Wang WM, Wei TT, Gao HX, Xiao LB, Xu KZ, Zhao FQ (2017) Effects of Nano PbZrO3 on the decompositions of AP, RDX, HMX and the combustion of (NG/NC) propellant. Chinese J Explos Propellants 40(6):29–35 Wang WM, Wei TT, Gao HX, Xiao LB, Xu KZ, Zhao FQ (2017) Effects of Nano PbZrO3 on the decompositions of AP, RDX, HMX and the combustion of (NG/NC) propellant. Chinese J Explos Propellants 40(6):29–35
26.
go back to reference Zhang DD et al (2017) Preparation and properties of RDX/Al/SiO2 nano-composite energetic materials. Chinese J Energ Mater 25(8):656–660 Zhang DD et al (2017) Preparation and properties of RDX/Al/SiO2 nano-composite energetic materials. Chinese J Energ Mater 25(8):656–660
27.
go back to reference Chen JK, Brill TB (1991) Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions. Combust Flame 87(3–4):217–232CrossRef Chen JK, Brill TB (1991) Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions. Combust Flame 87(3–4):217–232CrossRef
28.
go back to reference Sharia O, Tsyshevsky R, Kuklja MM (2013) Surface-Accelerated Decomposition of δ-HMX. J Phys Chem Lett 4(5):730–734 Sharia O, Tsyshevsky R, Kuklja MM (2013) Surface-Accelerated Decomposition of δ-HMX. J Phys Chem Lett 4(5):730–734
29.
go back to reference Li YB, Pan LP, Yang ZJ, Gong FY, Zheng X, He GS (2017) The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX. Def Technol 13(6):422–427 Li YB, Pan LP, Yang ZJ, Gong FY, Zheng X, He GS (2017) The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX. Def Technol 13(6):422–427
30.
go back to reference Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. Appl Surf Sci 271:337–343 Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. Appl Surf Sci 271:337–343
31.
go back to reference Wang H, DeLisio JB, Jian G, Zhou W, Zachariah MR (2015) Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles. Combust Flame 162(7):2823–2829CrossRef Wang H, DeLisio JB, Jian G, Zhou W, Zachariah MR (2015) Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles. Combust Flame 162(7):2823–2829CrossRef
32.
go back to reference Elbasuney S, Fahd A (2019) Combustion wave of metalized extruded double-base propellants. Fuel 237(2018):1274–1280 Elbasuney S, Fahd A (2019) Combustion wave of metalized extruded double-base propellants. Fuel 237(2018):1274–1280
33.
go back to reference Jacob RJ, Jian G, Guerieri PM, Zachariah MR (2015) Energy release pathways in nanothermites follow through the condensed state. Combust Flame 162(1):258–264CrossRef Jacob RJ, Jian G, Guerieri PM, Zachariah MR (2015) Energy release pathways in nanothermites follow through the condensed state. Combust Flame 162(1):258–264CrossRef
34.
go back to reference Pang W, De Luca LT, Fan X, Maggi F, Xu H, Xie W, Shi X (2016) Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust Sci Technol 188(3):315–328 Pang W, De Luca LT, Fan X, Maggi F, Xu H, Xie W, Shi X (2016) Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust Sci Technol 188(3):315–328
35.
go back to reference Korotkikh AG, Glotov OG, Arkhipov VA, Zarko VE, Kiskin AB (2017) Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust Flame 178:195–204CrossRef Korotkikh AG, Glotov OG, Arkhipov VA, Zarko VE, Kiskin AB (2017) Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust Flame 178:195–204CrossRef
36.
go back to reference Weiqiang P et al (2015) Effects of nano-metric aluminum powder on the properties of composite solid propellants. Int J Energ Mater Chem Propuls 14(4):265–282 Weiqiang P et al (2015) Effects of nano-metric aluminum powder on the properties of composite solid propellants. Int J Energ Mater Chem Propuls 14(4):265–282
37.
go back to reference Paravan C, Verga A, Maggi F, Galfetti L (2019) Accelerated ageing of micron- and nano-sized aluminum powders: Metal content, composition and non-isothermal oxidation reactivity. Acta Astronaut 158:397–406 Paravan C, Verga A, Maggi F, Galfetti L (2019) Accelerated ageing of micron- and nano-sized aluminum powders: Metal content, composition and non-isothermal oxidation reactivity. Acta Astronaut 158:397–406
38.
go back to reference Ilyin A, Tikhonov D, Mostovshchikov A (2018) Parameters of aluminum nanopowders activity after long-term storage in an airtight container. Propellants Explos Pyrotech 43(8):749–753 Ilyin A, Tikhonov D, Mostovshchikov A (2018) Parameters of aluminum nanopowders activity after long-term storage in an airtight container. Propellants Explos Pyrotech 43(8):749–753
39.
go back to reference Kabanov DV, Merkulov VG, Mostovshchikov AV, Ilyin AP (2018) Trace impurities analysis of aluminum nanopowder and its air combustion product. In: AIP conference proceedings, 1938:020007 Kabanov DV, Merkulov VG, Mostovshchikov AV, Ilyin AP (2018) Trace impurities analysis of aluminum nanopowder and its air combustion product. In: AIP conference proceedings, 1938:020007
40.
go back to reference Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame 159(1):409–415CrossRef Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame 159(1):409–415CrossRef
41.
go back to reference Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A (2010) Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos Pyrotech 35(3):226–232 Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A (2010) Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos Pyrotech 35(3):226–232
42.
go back to reference Lerner M, Vorozhtsov A, Guseinov S, Storozhenko P (2014) In metal nanopowders: production. Charact Energ Appl 440 Lerner M, Vorozhtsov A, Guseinov S, Storozhenko P (2014) In metal nanopowders: production. Charact Energ Appl 440
43.
go back to reference Sergienko AV, Popenko EM, Slyusarsky KV, Larionov KB, Dzidziguri EL, Kondratyeva ES, Gromov AA (2019) Burning characteristics of the HMX/CL‐20/AP/Polyvinyltetrazole Binder/Al solid propellants loaded with nanometals. Propellants Explos Pyrotech 44(2):217–223 Sergienko AV, Popenko EM, Slyusarsky KV, Larionov KB, Dzidziguri EL, Kondratyeva ES, Gromov AA (2019) Burning characteristics of the HMX/CL‐20/AP/Polyvinyltetrazole Binder/Al solid propellants loaded with nanometals. Propellants Explos Pyrotech 44(2):217–223
44.
go back to reference Ilyin A, Gromov A, An V, Faubert F, De Izarra C, Espagnacq A, Brunet L (2002) Characterization of aluminum powders I. Parameters of reactivity of aluminum powders. Propellants Explos Pyrotech 27(6):361–364 Ilyin A, Gromov A, An V, Faubert F, De Izarra C, Espagnacq A, Brunet L (2002) Characterization of aluminum powders I. Parameters of reactivity of aluminum powders. Propellants Explos Pyrotech 27(6):361–364
45.
go back to reference Kubota N (2007) Propellants and explosives: thermochemical aspects of combustion, 2nd edn. 509 p Kubota N (2007) Propellants and explosives: thermochemical aspects of combustion, 2nd edn. 509 p
46.
go back to reference Valluri SK, Schoenitz M, Dreizin EL (2019) Combustion of aluminum-metal fluoride reactive composites in different environments. Propellants Explos Pyrotech 327–1336 Valluri SK, Schoenitz M, Dreizin EL (2019) Combustion of aluminum-metal fluoride reactive composites in different environments. Propellants Explos Pyrotech 327–1336
47.
go back to reference Wang K, Wang J, Guo T, Wang W, Liu D (2019) Research on the thermal decomposition kinetics and the isothermal stability of HMX. J Therm Anal Calorim 135(4):2513–2518CrossRef Wang K, Wang J, Guo T, Wang W, Liu D (2019) Research on the thermal decomposition kinetics and the isothermal stability of HMX. J Therm Anal Calorim 135(4):2513–2518CrossRef
48.
go back to reference Abd-Elghany M, Klapötke TM, Elbeih A, Zeman S (2017) Investigation of different thermal analysis techniques to determine the decomposition kinetics of ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured PBX. J Anal Appl Pyrolysis 126(May):267–274CrossRef Abd-Elghany M, Klapötke TM, Elbeih A, Zeman S (2017) Investigation of different thermal analysis techniques to determine the decomposition kinetics of ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured PBX. J Anal Appl Pyrolysis 126(May):267–274CrossRef
49.
go back to reference Zou H, Chen S, Li X, Shang F, Ma X, Zhao J, Shu Q (2017) Thermal behaviour and decomposition kinetics of CL-20-based plastic-bonded explosives. J Therm Anal Calorim 128(3):1867–1873 Zou H, Chen S, Li X, Shang F, Ma X, Zhao J, Shu Q (2017) Thermal behaviour and decomposition kinetics of CL-20-based plastic-bonded explosives. J Therm Anal Calorim 128(3):1867–1873
50.
go back to reference Padwal MB, Varma M (2018) Thermal decomposition and combustion characteristics of HTPB-coarse AP composite solid propellants catalyzed with Fe2O3. Combust Sci Technol 190(9):1614–1629CrossRef Padwal MB, Varma M (2018) Thermal decomposition and combustion characteristics of HTPB-coarse AP composite solid propellants catalyzed with Fe2O3. Combust Sci Technol 190(9):1614–1629CrossRef
51.
go back to reference Boldyrev VV (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443(1):1–36CrossRef Boldyrev VV (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443(1):1–36CrossRef
52.
go back to reference Nedelko VV et al (2000) Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Propellants Explos Pyrotech 25(5):255–259CrossRef Nedelko VV et al (2000) Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Propellants Explos Pyrotech 25(5):255–259CrossRef
53.
go back to reference Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech 22(5):249–255CrossRef Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech 22(5):249–255CrossRef
54.
go back to reference Chen Y et al (2017) Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combust Flame 182:225–237CrossRef Chen Y et al (2017) Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combust Flame 182:225–237CrossRef
55.
go back to reference Fuller ME, Schaefer CE, Lowey JM (2007) Degradation of explosives-related compounds using nickel catalysts. Chemosphere 67(3):419–427CrossRef Fuller ME, Schaefer CE, Lowey JM (2007) Degradation of explosives-related compounds using nickel catalysts. Chemosphere 67(3):419–427CrossRef
56.
go back to reference Verma S, Ramakrishna PA (2013) Effect of specific surface area of aluminum on composite solid propellant burning. J Propuls Power 29(5):1200–1206 Verma S, Ramakrishna PA (2013) Effect of specific surface area of aluminum on composite solid propellant burning. J Propuls Power 29(5):1200–1206
57.
go back to reference Il’in AP, Gromov AA, Yablunovskii GV (2001) Reactivity of aluminum powders. Combust Explos Shock Waves 37(4):418–422 Il’in AP, Gromov AA, Yablunovskii GV (2001) Reactivity of aluminum powders. Combust Explos Shock Waves 37(4):418–422
58.
go back to reference Gromov A, Strokova Y, Kabardin A, Vorozhtsov A, Teipel U (2009) Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN. Propellants Explos Pyrotech 34(6):506–512 Gromov A, Strokova Y, Kabardin A, Vorozhtsov A, Teipel U (2009) Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN. Propellants Explos Pyrotech 34(6):506–512
59.
go back to reference Fan XP, Wang X, Liu ZR, Tan HM (2005) Catalysis of nano Cu powder on the thermal decomposition of HMX and RDX. Hanneng Cailiao/Energetic Mater 13(5):284–287 Fan XP, Wang X, Liu ZR, Tan HM (2005) Catalysis of nano Cu powder on the thermal decomposition of HMX and RDX. Hanneng Cailiao/Energetic Mater 13(5):284–287
60.
go back to reference Ryzhonkov DI, Levina VV, Dzidziguri EL, Khrustov EN (2008) Controlling the properties of nanodimensional metal oxide powders via introduction of dispersing additions. Russ J Non-Ferrous Met 49(4):308–313 Ryzhonkov DI, Levina VV, Dzidziguri EL, Khrustov EN (2008) Controlling the properties of nanodimensional metal oxide powders via introduction of dispersing additions. Russ J Non-Ferrous Met 49(4):308–313
61.
go back to reference Krishnan S, Jeenu R (1992) Combustion characteristics of AP/HTPB propellants with burning rate modifiers. J Propuls Power 8(4):748–755 Krishnan S, Jeenu R (1992) Combustion characteristics of AP/HTPB propellants with burning rate modifiers. J Propuls Power 8(4):748–755
62.
go back to reference Chen B, Xia Z, Huang L, Hu J (2017) Ignition and combustion model of a single boron particle. Fuel Process Technol 165:34–43 Chen B, Xia Z, Huang L, Hu J (2017) Ignition and combustion model of a single boron particle. Fuel Process Technol 165:34–43
63.
go back to reference De Luca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Babuk VA (2005) Burning of nano-aluminized composite rocket propellants. Combust Explos Shock Waves 41(6):680–692 De Luca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Babuk VA (2005) Burning of nano-aluminized composite rocket propellants. Combust Explos Shock Waves 41(6):680–692
64.
go back to reference Foelsche RO, Burton RL, Krier H (1999) Boron particle ignition and combustion at 30–150 atm. Combust Flame 117(1–2):32–58 Foelsche RO, Burton RL, Krier H (1999) Boron particle ignition and combustion at 30–150 atm. Combust Flame 117(1–2):32–58
65.
go back to reference Hussmann B, Pfitzner M (2010) Extended combustion model for single boron particles–Part I: Theory. Combust Flame 157(4):803–821 Hussmann B, Pfitzner M (2010) Extended combustion model for single boron particles–Part I: Theory. Combust Flame 157(4):803–821
66.
go back to reference Ivanov YF, Osmonoliev MN, Sedoi VS, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Kuznetsov VT (2003) Productions of ultra‐fine powders and their use in high energetic compositions. Propellants Explos Pyrotech 28(6):319–333 Ivanov YF, Osmonoliev MN, Sedoi VS, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Kuznetsov VT (2003) Productions of ultra‐fine powders and their use in high energetic compositions. Propellants Explos Pyrotech 28(6):319–333
67.
go back to reference Kim SJ, Chen ZC, Virkar AV (1988) Phase transformation kinetics in the doped system LiAl O—LiFe O. J Am Ceram Soc 71(10):C428–C432 Kim SJ, Chen ZC, Virkar AV (1988) Phase transformation kinetics in the doped system LiAl O—LiFe O. J Am Ceram Soc 71(10):C428–C432
68.
go back to reference Kumari A, Kurva R, Jain S, Jawalkar SN, Mehilal M, Singh PP, Bhattacharya B (2015) Evaluation of nanoaluminum in composite propellant formulation using bicurative system. J Propulsion Power 31(1):393–399 Kumari A, Kurva R, Jain S, Jawalkar SN, Mehilal M, Singh PP, Bhattacharya B (2015) Evaluation of nanoaluminum in composite propellant formulation using bicurative system. J Propulsion Power 31(1):393–399
69.
go back to reference Lade R, Wasewar K, Sangtyani R, Kumar A, Shende D, Peshwe D (2019) Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant. J Energ Mater 37(2):125–140 Lade R, Wasewar K, Sangtyani R, Kumar A, Shende D, Peshwe D (2019) Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant. J Energ Mater 37(2):125–140
70.
go back to reference Pokhil PF, Belyaev AF, Frolov YV, Logachev VS, Korotkov AI (1973) Combustion of powered metals in active media. Transl of the book “Goreniye Poroshkoobraznykh Metallov v Aktivnykh Sredakh” USSR 1972:295 Pokhil PF, Belyaev AF, Frolov YV, Logachev VS, Korotkov AI (1973) Combustion of powered metals in active media. Transl of the book “Goreniye Poroshkoobraznykh Metallov v Aktivnykh Sredakh” USSR 1972:295
71.
go back to reference Popenko EM, Gromov AA, Shamina YY, Il’in AP, Sergienko AV, Popok NI (2007) Effect of the addition of ultrafine aluminum powders on the rheological properties and burning rate of energetic condensed systems. Combust Explos Shock Waves 43(1):46–50 Popenko EM, Gromov AA, Shamina YY, Il’in AP, Sergienko AV, Popok NI (2007) Effect of the addition of ultrafine aluminum powders on the rheological properties and burning rate of energetic condensed systems. Combust Explos Shock Waves 43(1):46–50
72.
go back to reference Aoyama M, Amano Y, Inoue K, Honda S, Hashimoto S, Iwamoto Y (2013) Synthesis and characterization of lithium aluminate red phosphors. J Lumin 135:211–215 Aoyama M, Amano Y, Inoue K, Honda S, Hashimoto S, Iwamoto Y (2013) Synthesis and characterization of lithium aluminate red phosphors. J Lumin 135:211–215
73.
go back to reference Vo TA, Jung M, Adams D, Shim H, Kim H, Hwang R, Oh M (2020) Dynamic modeling and simulation of the combustion of aluminized solid propellant with HMX and GAP using moving boundary approach. Combust Flame 213:409–425 Vo TA, Jung M, Adams D, Shim H, Kim H, Hwang R, Oh M (2020) Dynamic modeling and simulation of the combustion of aluminized solid propellant with HMX and GAP using moving boundary approach. Combust Flame 213:409–425
Metadata
Title
Aluminized Solid Propellants Loaded with Metals and Metal Oxides: Characterization, Thermal Behavior, and Combustion
Authors
Alexander A. Gromov
Konstantin V. Slusarsky
Alexey V. Sergienko
Elena M. Popenko
Ella L. Dzidziguri
Kirill B. Larionov
Ilya V. Mishakov
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4831-4_6