Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Aluminum-Based Nano-energetic Materials: State of the Art and Future Perspectives

Author : Rajagopalan Thiruvengadathan

Published in: Nano-Energetic Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Technological innovations are indeed driven by enhanced abilities to understand and manipulate matter at molecular and atomic scale. Engineering energetic nanocomposites with tailored and tunable combustion characteristics is indispensable for their deployment in both civilian and defense applications. Specifically, a heterogeneous mixture of fuel [aluminum (Al), boron, magnesium, silicon, etc.] and oxidizer [cupric oxide, bismuth trioxide (Bi2O3), ferric oxide, etc.] with both the constituents having nanoscale dimensions constitutes a class of energetic material known as nanothermites. Among various fuels employed in nano-energetic formulations, the number of theoretical and experimental investigations on the utilization of Al outweighs that of any other metallic fuel. Knowledge on the physical and chemical characteristics of the constituents and their impact on combustion performance are fundamental to accelerate the pace of research and development in nano-energetic composites. Efforts to develop comprehensive understanding of the oxidation behavior are discussed in this article. Furthermore, the organization, intimacy, and dimensions of discrete fuels and oxidizers apart from their chemistry largely dictate the combustion kinetics exhibited by nanothermites. For a given nanocomposite, increasing the interfacial contact area between fuel and oxidizer improves its reaction rate by 3–5 orders of magnitude as a result of drastic reduction in mass and heat transport lengths. The bottom-up self-assembly process offers the most realistic solution to enhance the interfacial contacts between nanoscale constituents employing different approaches. This review summarizes the key findings in this area of research and lists the key challenges and opportunities for furthering the application aspects. Enhancement of combustion characteristics of energetic liquids through the utilization of Al and metal oxide nanoparticles as additives is another area of related research that continues to receive increasing attention (Sundaram et al. 2017). Energetic liquids possess unique characteristics such as lower activation temperature, higher pressure, and better volume expansion. Experimental research efforts have demonstrated ample promise for overcoming the inherent problems such as lower energy density and slow burn kinetics associated with energetic liquids. In gist, the central theme of this chapter is devoted to highlight and analyze the recent advancements on aluminum-based nano-energetic materials besides presenting the challenges and opportunities in the domain of nano-energetic materials development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150(1–2):60–70CrossRef Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150(1–2):60–70CrossRef
go back to reference Apperson S, Shende RV, Subramanian S, Tappmeyer D, Gangopadhyay S, Chen Z, Gangopadhyay K, Redner P, Nicholich S, Kapoor D (2007) Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl Phys Lett 91(24) Apperson S, Shende RV, Subramanian S, Tappmeyer D, Gangopadhyay S, Chen Z, Gangopadhyay K, Redner P, Nicholich S, Kapoor D (2007) Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl Phys Lett 91(24)
go back to reference Apperson SJ, Bezmelnitsyn AV, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid-fuel microthruster applications. J Propul Power 25(5):1086–1091CrossRef Apperson SJ, Bezmelnitsyn AV, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid-fuel microthruster applications. J Propul Power 25(5):1086–1091CrossRef
go back to reference Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf 96:482–503CrossRef Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf 96:482–503CrossRef
go back to reference Bergsmark E, Simensen CJ, Kofstad P (1989) The oxidation of molten aluminum. Mater Sci Eng A 120:91–95CrossRef Bergsmark E, Simensen CJ, Kofstad P (1989) The oxidation of molten aluminum. Mater Sci Eng A 120:91–95CrossRef
go back to reference Bezmelnitsyn A, Thiruvengadathan R, Barizuddin S, Tappmeyer D, Apperson S, Gangopadhyay K, Gangopadhyay S, Redner P, Donadio M, Kapoor D, Nicolich S (2010) Modified nanoenergetic composites with tunable combustion characteristics for propellant applications. Propellants, Explos, Pyrotech 35(4):384–394CrossRef Bezmelnitsyn A, Thiruvengadathan R, Barizuddin S, Tappmeyer D, Apperson S, Gangopadhyay K, Gangopadhyay S, Redner P, Donadio M, Kapoor D, Nicolich S (2010) Modified nanoenergetic composites with tunable combustion characteristics for propellant applications. Propellants, Explos, Pyrotech 35(4):384–394CrossRef
go back to reference Campbell TJ, Aral G, Ogata S, Kalia RK, Nakano A, Vashishta P (2005) Oxidation of aluminum nanoclusters. Phys Rev B Condens Matter Mater Phys 71(20) Campbell TJ, Aral G, Ogata S, Kalia RK, Nakano A, Vashishta P (2005) Oxidation of aluminum nanoclusters. Phys Rev B Condens Matter Mater Phys 71(20)
go back to reference Chaalane A, Chemam R, Houabes M, Yahiaoui R, Metatla A, Ouari B, Metatla N, Mahi D, Dkhissi A, Esteve D (2015) A MEMS-based solid propellant microthruster array for space and military applications Chaalane A, Chemam R, Houabes M, Yahiaoui R, Metatla A, Ouari B, Metatla N, Mahi D, Dkhissi A, Esteve D (2015) A MEMS-based solid propellant microthruster array for space and military applications
go back to reference Chakraborty P, Zachariah MR (2014) Do nanoenergetic particles remain nano-sized during combustion? Combust Flame 161(5):1408–1416CrossRef Chakraborty P, Zachariah MR (2014) Do nanoenergetic particles remain nano-sized during combustion? Combust Flame 161(5):1408–1416CrossRef
go back to reference Chen B, Zheng H, Riehn M, Bok S, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) In situ characterization of photothermal nanoenergetic combustion on a plasmonic microchip. ACS Appl Mater Interfaces 10(1):427–436CrossRef Chen B, Zheng H, Riehn M, Bok S, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) In situ characterization of photothermal nanoenergetic combustion on a plasmonic microchip. ACS Appl Mater Interfaces 10(1):427–436CrossRef
go back to reference Cheng JL, Hng HH, Lee YW, Du SW, Thadhani NN (2010a) Kinetic study of thermal- and impact-initiated reactions in Al–Fe2O3 nanothermite. Combust Flame 157(12):2241–2249CrossRef Cheng JL, Hng HH, Lee YW, Du SW, Thadhani NN (2010a) Kinetic study of thermal- and impact-initiated reactions in Al–Fe2O3 nanothermite. Combust Flame 157(12):2241–2249CrossRef
go back to reference Cheng JL, Hng HH, Ng HY, Soon PC, Lee YW (2010b) Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system. J Phys Chem Solid 71(2):90–94CrossRef Cheng JL, Hng HH, Ng HY, Soon PC, Lee YW (2010b) Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system. J Phys Chem Solid 71(2):90–94CrossRef
go back to reference Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah MR (2010) Diffusive vs explosive reaction at the nanoscale. J Phys Chem C 114(20):9191–9195CrossRef Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah MR (2010) Diffusive vs explosive reaction at the nanoscale. J Phys Chem C 114(20):9191–9195CrossRef
go back to reference Clark R, Wang W, Nomura KI, Kalia RK, Nakano A, Vashishta P (2011) Heat-initiated oxidation of an aluminum nanoparticle Clark R, Wang W, Nomura KI, Kalia RK, Nakano A, Vashishta P (2011) Heat-initiated oxidation of an aluminum nanoparticle
go back to reference Comet M, Martin C, Schnell F, Spitzer D (2017) Nanothermite foams: from nanopowder to object. Chem Eng J 316:807–812CrossRef Comet M, Martin C, Schnell F, Spitzer D (2017) Nanothermite foams: from nanopowder to object. Chem Eng J 316:807–812CrossRef
go back to reference Crouse CA, Pierce CJ, Spowart JE (2010) Influencing solvent miscibility and aqueous stability of aluminum nanoparticles through surface functionalization with acrylic monomers. ACS Appl Mater Interfaces 2(9):2560–2569CrossRef Crouse CA, Pierce CJ, Spowart JE (2010) Influencing solvent miscibility and aqueous stability of aluminum nanoparticles through surface functionalization with acrylic monomers. ACS Appl Mater Interfaces 2(9):2560–2569CrossRef
go back to reference Dikici B, Dean SW, Pantoya ML, Levitas VI, Jouet RJ (2009) Influence of aluminum passivation on the reaction mechanism: flame propagation studies. Energy Fuels 23(9):4231–4235CrossRef Dikici B, Dean SW, Pantoya ML, Levitas VI, Jouet RJ (2009) Influence of aluminum passivation on the reaction mechanism: flame propagation studies. Energy Fuels 23(9):4231–4235CrossRef
go back to reference Farley CW, Pantoya ML, Levitas VI (2014) A mechanistic perspective of atmospheric oxygen sensitivity on composite energetic material reactions. Combust Flame 161(4):1131–1134CrossRef Farley CW, Pantoya ML, Levitas VI (2014) A mechanistic perspective of atmospheric oxygen sensitivity on composite energetic material reactions. Combust Flame 161(4):1131–1134CrossRef
go back to reference Firmansyah DA, Sullivan K, Lee KS, Kim YH, Zahaf R, Zachariah MR, Lee D (2012) Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles. J Phys Chem C 116(1):404–411CrossRef Firmansyah DA, Sullivan K, Lee KS, Kim YH, Zahaf R, Zachariah MR, Lee D (2012) Microstructural behavior of the alumina shell and aluminum core before and after melting of aluminum nanoparticles. J Phys Chem C 116(1):404–411CrossRef
go back to reference Fu S, Zhu Y, Li D, Zhu P, Hu B, Ye Y, Shen R (2013) Deposition and characterization of highly energetic Al/MoOx multilayer nano-films. EPJ Appl Phys 64(3)CrossRef Fu S, Zhu Y, Li D, Zhu P, Hu B, Ye Y, Shen R (2013) Deposition and characterization of highly energetic Al/MoOx multilayer nano-films. EPJ Appl Phys 64(3)CrossRef
go back to reference Geeson J, Staley C, Bok S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S (2018) Graphene-based Al-Bi2O3 nanoenergetic films by electrophoretic deposition. In: 12th IEEE nanotechnology materials and devices conference, NMDC 2017, Institute of Electrical and Electronics Engineers Inc Geeson J, Staley C, Bok S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S (2018) Graphene-based Al-Bi2O3 nanoenergetic films by electrophoretic deposition. In: 12th IEEE nanotechnology materials and devices conference, NMDC 2017, Institute of Electrical and Electronics Engineers Inc
go back to reference Gibot P, Comet M, Eichhorn A, Schnell F, Muller O, Ciszek F, Boehrer Y, Spitzer D (2011) Highly insensitive/reactive thermite prepared from Cr2O3 nanoparticles. Propellants, Explos, Pyrotech 36(1):80–87CrossRef Gibot P, Comet M, Eichhorn A, Schnell F, Muller O, Ciszek F, Boehrer Y, Spitzer D (2011) Highly insensitive/reactive thermite prepared from Cr2O3 nanoparticles. Propellants, Explos, Pyrotech 36(1):80–87CrossRef
go back to reference Gordeev VV, Kazutin MV, Kozyrev NV (2017) Effect of additives on CuO/Al nanothermite properties. In: All-Russian conference with international participation on modern problems of continuum mechanics and explosion physics: dedicated to the 60th anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, MPCMEP 2017, Institute of Physics Publishing Gordeev VV, Kazutin MV, Kozyrev NV (2017) Effect of additives on CuO/Al nanothermite properties. In: All-Russian conference with international participation on modern problems of continuum mechanics and explosion physics: dedicated to the 60th anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, MPCMEP 2017, Institute of Physics Publishing
go back to reference Gottfried JL, Smith DK, Wu CC, Pantoya ML (2018) Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci Rep 8(1) Gottfried JL, Smith DK, Wu CC, Pantoya ML (2018) Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci Rep 8(1)
go back to reference Granier JJ, Pantoya ML (2004) Laser ignition of nanocomposite thermites. Combust Flame 138(4):373–383CrossRef Granier JJ, Pantoya ML (2004) Laser ignition of nanocomposite thermites. Combust Flame 138(4):373–383CrossRef
go back to reference Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605CrossRef Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605CrossRef
go back to reference He G, Yang Z, Zhou X, Zhang J, Pan L, Liu S (2016) Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos Sci Technol 131:22–31CrossRef He G, Yang Z, Zhou X, Zhang J, Pan L, Liu S (2016) Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos Sci Technol 131:22–31CrossRef
go back to reference Henz BJ, Hawa T, Zachariah MR (2010) On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: ion mobility versus Fickian diffusion. J Appl Phys 107(2)CrossRef Henz BJ, Hawa T, Zachariah MR (2010) On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: ion mobility versus Fickian diffusion. J Appl Phys 107(2)CrossRef
go back to reference Hong S, Van Duin ACT (2015) Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field. J Phys Chem C 119(31):17876–17886CrossRef Hong S, Van Duin ACT (2015) Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field. J Phys Chem C 119(31):17876–17886CrossRef
go back to reference Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Chemistry: production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450CrossRef Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Chemistry: production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450CrossRef
go back to reference Jacob RJ, Wei B, Zachariah MR (2016) Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combust Flame 167:472–480CrossRef Jacob RJ, Wei B, Zachariah MR (2016) Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combust Flame 167:472–480CrossRef
go back to reference Jacob RJ, Kline DJ, Zachariah MR (2018) High speed 2-dimensional temperature measurements of nanothermite composites: probing thermal vs. Gas generation effects. J Appl Phys 123(11)CrossRef Jacob RJ, Kline DJ, Zachariah MR (2018) High speed 2-dimensional temperature measurements of nanothermite composites: probing thermal vs. Gas generation effects. J Appl Phys 123(11)CrossRef
go back to reference Jeurgens LPH, Sloof WG, Tichelaar FD, Mittemeijer EJ (2002) Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J Appl Phys 92(3):1649–1656CrossRef Jeurgens LPH, Sloof WG, Tichelaar FD, Mittemeijer EJ (2002) Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J Appl Phys 92(3):1649–1656CrossRef
go back to reference Jian G, Chowdhury S, Sullivan K, Zachariah MR (2013) Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust Flame 160(2):432–437CrossRef Jian G, Chowdhury S, Sullivan K, Zachariah MR (2013) Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust Flame 160(2):432–437CrossRef
go back to reference Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17(11):2987–2996CrossRef Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17(11):2987–2996CrossRef
go back to reference Jouet RJ, Granholm RH, Sandusky HW, Warren AD (2006) Preparation and shock reactivity analysis of novel perfluoroalkyl-coated aluminum nanocomposites Jouet RJ, Granholm RH, Sandusky HW, Warren AD (2006) Preparation and shock reactivity analysis of novel perfluoroalkyl-coated aluminum nanocomposites
go back to reference Kelly D, Beland P, Brousseau P, Petre CF (2017a) Electrostatic discharge sensitivity and resistivity measurements of Al nanothermites and their fuel and oxidant precursors. Centr Eur J Energ Mater 14(1):105–119CrossRef Kelly D, Beland P, Brousseau P, Petre CF (2017a) Electrostatic discharge sensitivity and resistivity measurements of Al nanothermites and their fuel and oxidant precursors. Centr Eur J Energ Mater 14(1):105–119CrossRef
go back to reference Kelly DG, Beland P, Brousseau P, Petre CF (2017b) Formation of additive-containing nanothermites and modifications to their friction sensitivity. J Energ Mater 35(3):331–345CrossRef Kelly DG, Beland P, Brousseau P, Petre CF (2017b) Formation of additive-containing nanothermites and modifications to their friction sensitivity. J Energ Mater 35(3):331–345CrossRef
go back to reference Kim SH, Zachariah MR (2004) Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv Mater 16(20):1821–1825CrossRef Kim SH, Zachariah MR (2004) Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv Mater 16(20):1821–1825CrossRef
go back to reference Kim H, Hambir SA, Dlott DD (2002) Ultrafast high repetition rate absorption spectroscopy of polymer shock compression. Shock Waves 12(1):79–86CrossRef Kim H, Hambir SA, Dlott DD (2002) Ultrafast high repetition rate absorption spectroscopy of polymer shock compression. Shock Waves 12(1):79–86CrossRef
go back to reference Kim JH, Cho MH, Kim KJ, Kim SH (2017) Laser ignition and controlled explosion of nanoenergetic materials: the role of multi-walled carbon nanotubes. Carbon 118:268–277CrossRef Kim JH, Cho MH, Kim KJ, Kim SH (2017) Laser ignition and controlled explosion of nanoenergetic materials: the role of multi-walled carbon nanotubes. Carbon 118:268–277CrossRef
go back to reference Lee BD, Thiruvengadathan R, Puttaswamy S, Smith BM, Gangopadhyay K, Gangopadhyay S, Sengupta S (2013) Ultra-rapid elimination of biofilms via the combustion of a nanoenergetic coating. BMC Biotechnol 13 Lee BD, Thiruvengadathan R, Puttaswamy S, Smith BM, Gangopadhyay K, Gangopadhyay S, Sengupta S (2013) Ultra-rapid elimination of biofilms via the combustion of a nanoenergetic coating. BMC Biotechnol 13
go back to reference Levitas VI (2009) Burn time of aluminum nanoparticles: strong effect of the heating rate and melt-dispersion mechanism. Combust Flame 156(2):543–546CrossRef Levitas VI (2009) Burn time of aluminum nanoparticles: strong effect of the heating rate and melt-dispersion mechanism. Combust Flame 156(2):543–546CrossRef
go back to reference Levitas VI, Asay BW, Son SF, Pantoya M (2006) Melt dispersion mechanism for fast reaction of nanothermites. Appl Phys Lett 89(7)CrossRef Levitas VI, Asay BW, Son SF, Pantoya M (2006) Melt dispersion mechanism for fast reaction of nanothermites. Appl Phys Lett 89(7)CrossRef
go back to reference Levitas VI, Asay BW, Son SF, Pantoya M (2007) Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J Appl Phys 101(8)CrossRef Levitas VI, Asay BW, Son SF, Pantoya M (2007) Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J Appl Phys 101(8)CrossRef
go back to reference Levitas VI, Pantoya ML, Dikici B (2008) Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: critical experiments and controlling parameters. Appl Phys Lett 92(1)CrossRef Levitas VI, Pantoya ML, Dikici B (2008) Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: critical experiments and controlling parameters. Appl Phys Lett 92(1)CrossRef
go back to reference Levitas VI, Dikici B, Pantoya ML (2011) Toward design of the pre-stressed nano- and microscale aluminum particles covered by oxide shell. Combust Flame 158(7):1413–1417CrossRef Levitas VI, Dikici B, Pantoya ML (2011) Toward design of the pre-stressed nano- and microscale aluminum particles covered by oxide shell. Combust Flame 158(7):1413–1417CrossRef
go back to reference Levitas VI, McCollum J, Pantoya M (2015) Pre-stressing micron-scale aluminum core-shell particles to improve reactivity. Sci Rep 5 Levitas VI, McCollum J, Pantoya M (2015) Pre-stressing micron-scale aluminum core-shell particles to improve reactivity. Sci Rep 5
go back to reference Liu LM, Car R, Selloni A, Dabbs DM, Aksay IA, Yetter RA (2012) Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: Ab initio molecular dynamics simulations. J Am Chem Soc 134(46):19011–19016CrossRef Liu LM, Car R, Selloni A, Dabbs DM, Aksay IA, Yetter RA (2012) Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: Ab initio molecular dynamics simulations. J Am Chem Soc 134(46):19011–19016CrossRef
go back to reference Mahadevan R, Lee D, Sakurai H, Zachariah MR (2002) Measurement of condensed-phase reaction kinetics in the aerosol phase using single particle mass spectrometry. J Phys Chem A 106(46):11083–11092CrossRef Mahadevan R, Lee D, Sakurai H, Zachariah MR (2002) Measurement of condensed-phase reaction kinetics in the aerosol phase using single particle mass spectrometry. J Phys Chem A 106(46):11083–11092CrossRef
go back to reference Malchi JY, Foley TJ, Yetter RA (2009) Electrostatically self-assembled nanocomposite reactive microspheres. ACS Appl Mater Interfaces 1(11):2420–2423CrossRef Malchi JY, Foley TJ, Yetter RA (2009) Electrostatically self-assembled nanocomposite reactive microspheres. ACS Appl Mater Interfaces 1(11):2420–2423CrossRef
go back to reference Martirosyan KS (2011) Nanoenergetic gas-generators: principles and applications. J Mater Chem 21(26):9400–9405CrossRef Martirosyan KS (2011) Nanoenergetic gas-generators: principles and applications. J Mater Chem 21(26):9400–9405CrossRef
go back to reference Mukasyan AS, Rogachev AS (2016) Combustion behavior of nanocomposite energetic materials. In: Energetic nanomaterials: synthesis, characterization, and application. Elsevier Inc, pp 163–192 Mukasyan AS, Rogachev AS (2016) Combustion behavior of nanocomposite energetic materials. In: Energetic nanomaterials: synthesis, characterization, and application. Elsevier Inc, pp 163–192
go back to reference Muthiah R, Krishnamurthy VN, Gupta BR (1992) Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci 44(11):2043–2052CrossRef Muthiah R, Krishnamurthy VN, Gupta BR (1992) Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci 44(11):2043–2052CrossRef
go back to reference Mutlu M, Kang JH, Raza S, Schoen D, Zheng X, Kik PG, Brongersma ML (2018) Thermoplasmonic ignition of metal nanoparticles. Nano Lett 18(3):1699–1706CrossRef Mutlu M, Kang JH, Raza S, Schoen D, Zheng X, Kik PG, Brongersma ML (2018) Thermoplasmonic ignition of metal nanoparticles. Nano Lett 18(3):1699–1706CrossRef
go back to reference Nixon E, Pantoya ML, Sivakumar G, Vijayasai A, Dallas T (2011) Effect of a superhydrophobic coating on the combustion of aluminium and iron oxide nanothermites. Surf Coat Technol 205(21–22):5103–5108CrossRef Nixon E, Pantoya ML, Sivakumar G, Vijayasai A, Dallas T (2011) Effect of a superhydrophobic coating on the combustion of aluminium and iron oxide nanothermites. Surf Coat Technol 205(21–22):5103–5108CrossRef
go back to reference Oh HU, Ha HW, Kim T, Lee JK (2016) Thermo-mechanical design for on-orbit verification of MEMS based solid propellant thruster array through STEP cube lab mission. Int J Aeronaut Space Sci 17(4):526–534CrossRef Oh HU, Ha HW, Kim T, Lee JK (2016) Thermo-mechanical design for on-orbit verification of MEMS based solid propellant thruster array through STEP cube lab mission. Int J Aeronaut Space Sci 17(4):526–534CrossRef
go back to reference Ohkura Y, Rao PM, Zheng X (2011) Flash ignition of Al nanoparticles: mechanism and applications. Combust Flame 158(12):2544–2548CrossRef Ohkura Y, Rao PM, Zheng X (2011) Flash ignition of Al nanoparticles: mechanism and applications. Combust Flame 158(12):2544–2548CrossRef
go back to reference Pantoya ML, Levitas VI, Granier JJ, Henderson JB (2009) Effect of bulk density on reaction propagation in nanothermites and micron thermites. J Propul Power 25(2):465–470CrossRef Pantoya ML, Levitas VI, Granier JJ, Henderson JB (2009) Effect of bulk density on reaction propagation in nanothermites and micron thermites. J Propul Power 25(2):465–470CrossRef
go back to reference Park K, Lee D, Rai A, Mukherjee D, Zachariah MR (2005) Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J Phys Chem B 109(15):7290–7299CrossRef Park K, Lee D, Rai A, Mukherjee D, Zachariah MR (2005) Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J Phys Chem B 109(15):7290–7299CrossRef
go back to reference Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5(20):14967–14973CrossRef Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5(20):14967–14973CrossRef
go back to reference Piekiel NW, Zhou L, Sullivan KT, Chowdhury S, Egan GC, Zachariah MR (2014) Initiation and reaction in Al/Bi2O3 nanothermites: evidence for the predominance of condensed phase chemistry. Combust Sci Technol 186(9):1209–1224CrossRef Piekiel NW, Zhou L, Sullivan KT, Chowdhury S, Egan GC, Zachariah MR (2014) Initiation and reaction in Al/Bi2O3 nanothermites: evidence for the predominance of condensed phase chemistry. Combust Sci Technol 186(9):1209–1224CrossRef
go back to reference Plummer A, Kuznetsov V, Joyner T, Shapter J, Voelcker NH (2011) The burning rate of energetic films of nanostructured porous silicon. Small 7(23):3392–3398CrossRef Plummer A, Kuznetsov V, Joyner T, Shapter J, Voelcker NH (2011) The burning rate of energetic films of nanostructured porous silicon. Small 7(23):3392–3398CrossRef
go back to reference Puszynski JA, Bulian CJ, Swiatkiewicz JJ, Kapoor D (2012) Formation of consolidated nanothermite materials using support substrates and/or binder materials. Int J Energ Mater Chem Propul 11(5):401–412 Puszynski JA, Bulian CJ, Swiatkiewicz JJ, Kapoor D (2012) Formation of consolidated nanothermite materials using support substrates and/or binder materials. Int J Energ Mater Chem Propul 11(5):401–412
go back to reference Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10(5):843–859CrossRef Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10(5):843–859CrossRef
go back to reference Rossi C (2014) Two decades of research on nano-energetic materials. Propellants, Explos, Pyrotech 39(3):323–327CrossRef Rossi C (2014) Two decades of research on nano-energetic materials. Propellants, Explos, Pyrotech 39(3):323–327CrossRef
go back to reference Ru CB, Ye YH, Wang CL, Zhu P, Shen RQ, Hu Y, Wu LZ (2014) Design and fabrication of MEMS-based solid propellant microthrusters array. In: Applied mechanics and materials, vol. 490–491, pp. 1042–1046CrossRef Ru CB, Ye YH, Wang CL, Zhu P, Shen RQ, Hu Y, Wu LZ (2014) Design and fabrication of MEMS-based solid propellant microthrusters array. In: Applied mechanics and materials, vol. 490–491, pp. 1042–1046CrossRef
go back to reference Ru C, Dai J, Xu J, Ye Y, Zhu P, Shen R (2016a) Design and optimization of micro-semiconductor bridge used for solid propellant microthrusters array. EPJ Appl Phys 74(3)CrossRef Ru C, Dai J, Xu J, Ye Y, Zhu P, Shen R (2016a) Design and optimization of micro-semiconductor bridge used for solid propellant microthrusters array. EPJ Appl Phys 74(3)CrossRef
go back to reference Ru CB, Wang F, Xu JB, Dai J, Shen Y, Ye YH, Zhu P, Shen RQ (2016b) Micropropulsion characteristics of nanothermites prepared by electrospray. Hanneng Cailiao/Chin J Energ Mater 24(12):1136–1144 Ru CB, Wang F, Xu JB, Dai J, Shen Y, Ye YH, Zhu P, Shen RQ (2016b) Micropropulsion characteristics of nanothermites prepared by electrospray. Hanneng Cailiao/Chin J Energ Mater 24(12):1136–1144
go back to reference Sabourin JL, Dabbs DM, Yetter RA, Dryer FL, Aksay IA (2009) Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano 3(12):3945–3954CrossRef Sabourin JL, Dabbs DM, Yetter RA, Dryer FL, Aksay IA (2009) Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano 3(12):3945–3954CrossRef
go back to reference Séverac F, Alphonse P, Estève A, Bancaud A, Rossi C (2012) High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv Func Mater 22(2):323–329CrossRef Séverac F, Alphonse P, Estève A, Bancaud A, Rossi C (2012) High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv Func Mater 22(2):323–329CrossRef
go back to reference Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W (2008) Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propellants, Explos, Pyrotech 33(2):122–130CrossRef Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W (2008) Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propellants, Explos, Pyrotech 33(2):122–130CrossRef
go back to reference Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601CrossRef Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601CrossRef
go back to reference Slocik JM, McKenzie R, Dennis PB, Naik RR (2017) Creation of energetic biothermite inks using ferritin liquid protein. Nat Commun 8CrossRef Slocik JM, McKenzie R, Dennis PB, Naik RR (2017) Creation of energetic biothermite inks using ferritin liquid protein. Nat Commun 8CrossRef
go back to reference Smith DK, Bello MN, Unruh DK, Pantoya ML (2017a) Synthesis and reactive characterization of aluminum iodate hexahydrate crystals [Al(H2O)6](IO3)3(HIO3)2. Combust Flame 179:154–156CrossRef Smith DK, Bello MN, Unruh DK, Pantoya ML (2017a) Synthesis and reactive characterization of aluminum iodate hexahydrate crystals [Al(H2O)6](IO3)3(HIO3)2. Combust Flame 179:154–156CrossRef
go back to reference Smith DK, Unruh DK, Pantoya ML (2017b) Replacing the Al2O3 Shell on Al particles with an oxidizing salt, aluminum iodate hexahydrate. Part II: synthesis. J Phys Chem C 121(41):23192–23199CrossRef Smith DK, Unruh DK, Pantoya ML (2017b) Replacing the Al2O3 Shell on Al particles with an oxidizing salt, aluminum iodate hexahydrate. Part II: synthesis. J Phys Chem C 121(41):23192–23199CrossRef
go back to reference Son SF, Mason BA (2010) An overview of nanoscale silicon reactive composites applied to microengergetics. 48th AIAA aerospace sciences meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL Son SF, Mason BA (2010) An overview of nanoscale silicon reactive composites applied to microengergetics. 48th AIAA aerospace sciences meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL
go back to reference Staley CS, Morris CJ, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Gangopadhyay S (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide-aluminum nanothermite. J Micromech Microeng 21(11)CrossRef Staley CS, Morris CJ, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Gangopadhyay S (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide-aluminum nanothermite. J Micromech Microeng 21(11)CrossRef
go back to reference Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2013) Fast-impulse nanothermite solid-propellant miniaturized thrusters. J Propul Power 29(6):1400–1409CrossRef Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2013) Fast-impulse nanothermite solid-propellant miniaturized thrusters. J Propul Power 29(6):1400–1409CrossRef
go back to reference Staley CS, Raymond KE, Thiruvengadathan R, Herbst JJ, Swaszek SM, Taylor RJ, Gangopadhyay K, Gangopadhyay S (2014) Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturized nanothermite thrusters. Propellants, Explos, Pyrotech 39(3):374–382CrossRef Staley CS, Raymond KE, Thiruvengadathan R, Herbst JJ, Swaszek SM, Taylor RJ, Gangopadhyay K, Gangopadhyay S (2014) Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturized nanothermite thrusters. Propellants, Explos, Pyrotech 39(3):374–382CrossRef
go back to reference Stamatis D, Jiang Z, Hoffmann VK, Schoenitz M, Dreizin EL (2009) Fully dense, aluminum-rich Al-CuO nanocomposite powders for energetic formulations. Combust Sci Technol 181(1):97–116CrossRef Stamatis D, Jiang Z, Hoffmann VK, Schoenitz M, Dreizin EL (2009) Fully dense, aluminum-rich Al-CuO nanocomposite powders for energetic formulations. Combust Sci Technol 181(1):97–116CrossRef
go back to reference Sundaram D, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energy Combust Sci 61:293–365CrossRef Sundaram D, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energy Combust Sci 61:293–365CrossRef
go back to reference Tappan AS (2007) Microenergetics: combustion and detonation at sub-millimeter scales Tappan AS (2007) Microenergetics: combustion and detonation at sub-millimeter scales
go back to reference Thiruvengadathan R, Bezmelnitsyn A, Apperson S, Staley C, Redner P, Balas W, Nicolich S, Kapoor D, Gangopadhyay K, Gangopadhyay S (2011) Combustion characteristics of novel hybrid nanoenergetic formulations. Combust Flame 158(5):964–978CrossRef Thiruvengadathan R, Bezmelnitsyn A, Apperson S, Staley C, Redner P, Balas W, Nicolich S, Kapoor D, Gangopadhyay K, Gangopadhyay S (2011) Combustion characteristics of novel hybrid nanoenergetic formulations. Combust Flame 158(5):964–978CrossRef
go back to reference Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6)CrossRef Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6)CrossRef
go back to reference Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30(22):6556–6564CrossRef Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30(22):6556–6564CrossRef
go back to reference Thiruvengadathan R, Staley C, Geeson JM, Chung S, Raymond KE, Gangopadhyay K, Gangopadhyay S (2015) Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly. Propellants, Explos, Pyrotech 40(5):729–734CrossRef Thiruvengadathan R, Staley C, Geeson JM, Chung S, Raymond KE, Gangopadhyay K, Gangopadhyay S (2015) Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly. Propellants, Explos, Pyrotech 40(5):729–734CrossRef
go back to reference Trunov MA, Schoenitz M, Dreizin EL (2005a) Ignition of aluminum powders under different experimental conditions. Propellants, Explos, Pyrotech 30(1):36–43CrossRef Trunov MA, Schoenitz M, Dreizin EL (2005a) Ignition of aluminum powders under different experimental conditions. Propellants, Explos, Pyrotech 30(1):36–43CrossRef
go back to reference Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005b) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140(4):310–318CrossRef Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005b) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140(4):310–318CrossRef
go back to reference Trunov MA, Schoenitz M, Dreizin EL (2006a) Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theor Model 10(4):603–623CrossRef Trunov MA, Schoenitz M, Dreizin EL (2006a) Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theor Model 10(4):603–623CrossRef
go back to reference Trunov MA, Umbrajkar SM, Schoenitz M, Mang JT, Dreizin EL (2006b) Oxidation and melting of aluminum nanopowders. J Phys Chem B 110(26):13094–13099CrossRef Trunov MA, Umbrajkar SM, Schoenitz M, Mang JT, Dreizin EL (2006b) Oxidation and melting of aluminum nanopowders. J Phys Chem B 110(26):13094–13099CrossRef
go back to reference Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL (2008) Aluminum-rich Al-MoO3 nanocomposite powders prepared by arrested reactive milling. J Propul Power 24(2):192–198CrossRef Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL (2008) Aluminum-rich Al-MoO3 nanocomposite powders prepared by arrested reactive milling. J Propul Power 24(2):192–198CrossRef
go back to reference Wang H, Jian G, Delisio JB, Zachariah MR (2014a) Microspheres composite of nano-Al and nanothermite: an approach to better utilization of nanomaterials. 52nd AIAA aerospace sciences meeting—AIAA science and technology forum and exposition, SciTech 2014, National Harbor, MD, American Institute of Aeronautics and Astronautics Inc Wang H, Jian G, Delisio JB, Zachariah MR (2014a) Microspheres composite of nano-Al and nanothermite: an approach to better utilization of nanomaterials. 52nd AIAA aerospace sciences meeting—AIAA science and technology forum and exposition, SciTech 2014, National Harbor, MD, American Institute of Aeronautics and Astronautics Inc
go back to reference Wang H, Jian G, Egan GC, Zachariah MR (2014b) Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust Flame 161(8):2203–2208CrossRef Wang H, Jian G, Egan GC, Zachariah MR (2014b) Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust Flame 161(8):2203–2208CrossRef
go back to reference Wang H, Zachariah MR, Xie L, Rao G (2015) Ignition and combustion characterization of nano-Al-AP and nano-Al-CuO-AP micro-sized composites produced by electrospray technique. In: 12th international conference on combustion and energy utilisation, ICCEU 2014, Elsevier Ltd Wang H, Zachariah MR, Xie L, Rao G (2015) Ignition and combustion characterization of nano-Al-AP and nano-Al-CuO-AP micro-sized composites produced by electrospray technique. In: 12th international conference on combustion and energy utilisation, ICCEU 2014, Elsevier Ltd
go back to reference Wang J, Bassett WP, Dlott DD (2017) Shock initiation of nano-Al/Teflon: high dynamic range pyrometry measurements. J Appl Phys 121(8)CrossRef Wang J, Bassett WP, Dlott DD (2017) Shock initiation of nano-Al/Teflon: high dynamic range pyrometry measurements. J Appl Phys 121(8)CrossRef
go back to reference Wang A, Bok S, Thiruvengadathan R, Gangopadhyay K, McFarland JA, Maschmann MR, Gangopadhyay S (2018) Reactive nanoenergetic graphene aerogel synthesized by one-step chemical reduction. Combust Flame 196:400–406CrossRef Wang A, Bok S, Thiruvengadathan R, Gangopadhyay K, McFarland JA, Maschmann MR, Gangopadhyay S (2018) Reactive nanoenergetic graphene aerogel synthesized by one-step chemical reduction. Combust Flame 196:400–406CrossRef
go back to reference Watson KW, Pantoya ML, Levitas VI (2008) Fast reactions with nano- and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame 155(4):619–634CrossRef Watson KW, Pantoya ML, Levitas VI (2008) Fast reactions with nano- and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame 155(4):619–634CrossRef
go back to reference Wuillaume A, Beaucamp A, David-Quillot F, Eradès C (2014) Formulation and characterizations of nanoenergetic compositions with improved safety. Propellants, Explos, Pyrotech 39(3):390–396CrossRef Wuillaume A, Beaucamp A, David-Quillot F, Eradès C (2014) Formulation and characterizations of nanoenergetic compositions with improved safety. Propellants, Explos, Pyrotech 39(3):390–396CrossRef
go back to reference Xue Y, Shi CJ, Ren XM, Liu L, Xie RZ (2014) Study of MEMS based micropyrotechnic igniter. In: Applied mechanics and materials, vol. 472, pp. 750–755CrossRef Xue Y, Shi CJ, Ren XM, Liu L, Xie RZ (2014) Study of MEMS based micropyrotechnic igniter. In: Applied mechanics and materials, vol. 472, pp. 750–755CrossRef
go back to reference Yang Y, Wang PP, Zhang ZC, Liu HL, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3 Yang Y, Wang PP, Zhang ZC, Liu HL, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3
go back to reference Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(II):1819–1838CrossRef Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32(II):1819–1838CrossRef
go back to reference Yu C, Zhang W, Gao Y, Ni D, Ye J, Zhu C, Ma K (2018) The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance. Chem Eng J 338:99–106CrossRef Yu C, Zhang W, Gao Y, Ni D, Ye J, Zhu C, Ma K (2018) The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance. Chem Eng J 338:99–106CrossRef
go back to reference Zakiyyan N, Wang A, Thiruvengadathan R, Staley C, Mathai J, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) Combustion of aluminum nanoparticles and exfoliated 2D molybdenum trioxide composites. Combust Flame 187:1–10CrossRef Zakiyyan N, Wang A, Thiruvengadathan R, Staley C, Mathai J, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) Combustion of aluminum nanoparticles and exfoliated 2D molybdenum trioxide composites. Combust Flame 187:1–10CrossRef
go back to reference Zarko VE (2016) Nanoenergetic materials: a new era in combustion and propulsion. In: Energetic nanomaterials: synthesis, characterization, and application. Elsevier Inc, pp 1–20 Zarko VE (2016) Nanoenergetic materials: a new era in combustion and propulsion. In: Energetic nanomaterials: synthesis, characterization, and application. Elsevier Inc, pp 1–20
go back to reference Zeng C, Wang J, He G, Huang C, Yang Z, Liu S, Gong F (2018) Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J Mater Sci 53(17):12091–12102CrossRef Zeng C, Wang J, He G, Huang C, Yang Z, Liu S, Gong F (2018) Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J Mater Sci 53(17):12091–12102CrossRef
go back to reference Zhang W, Yin B, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl Mater Interfaces 5(2):239–242CrossRef Zhang W, Yin B, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl Mater Interfaces 5(2):239–242CrossRef
go back to reference Zhang D, Xiang Q, Li X (2016) Highly reactive Al-Cr2O3 coating for electric-explosion applications. RSC Adv 6(103):100790–100795CrossRef Zhang D, Xiang Q, Li X (2016) Highly reactive Al-Cr2O3 coating for electric-explosion applications. RSC Adv 6(103):100790–100795CrossRef
go back to reference Zheng G, Zhang W, Shen R, Ye J, Qin Z, Chao Y (2016) Three-dimensionally ordered macroporous structure enabled nanothermite membrane of Mn2O3/Al. Sci Rep 6 Zheng G, Zhang W, Shen R, Ye J, Qin Z, Chao Y (2016) Three-dimensionally ordered macroporous structure enabled nanothermite membrane of Mn2O3/Al. Sci Rep 6
go back to reference Zheng Z, Zhang W, Yu C, Zheng G, Ma K, Qin Z, Ye J, Chao Y (2018) Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high-output micro-energetic igniter. RSC Adv 8(5):2552–2560CrossRef Zheng Z, Zhang W, Yu C, Zheng G, Ma K, Qin Z, Ye J, Chao Y (2018) Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high-output micro-energetic igniter. RSC Adv 8(5):2552–2560CrossRef
go back to reference Zhou W, Yu D (2013) Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. J Mater Sci 48(22):7960–7968CrossRef Zhou W, Yu D (2013) Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. J Mater Sci 48(22):7960–7968CrossRef
go back to reference Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2009) T-Jump/time-of-flight mass spectrometry for time-resolved analysis of energetic materials. Rapid Commun Mass Spectrom 23(1):194–202CrossRef Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2009) T-Jump/time-of-flight mass spectrometry for time-resolved analysis of energetic materials. Rapid Commun Mass Spectrom 23(1):194–202CrossRef
go back to reference Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2010) Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: the role of oxygen release. J Phys Chem C 114(33):14269–14275CrossRef Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2010) Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: the role of oxygen release. J Phys Chem C 114(33):14269–14275CrossRef
go back to reference Zhou X, Torabi M, Lu J, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074CrossRef Zhou X, Torabi M, Lu J, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074CrossRef
Metadata
Title
Aluminum-Based Nano-energetic Materials: State of the Art and Future Perspectives
Author
Rajagopalan Thiruvengadathan
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3269-2_2

Premium Partners