Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

18. Ammonothermal Materials

Authors : Wolfgang Schnick, Niklas Cordes, Mathias Mallmann, Rainer Niewa, Elke Meissner

Published in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Publisher: Springer International Publishing

Abstract

Even more than fifty years after the first ammonothermal syntheses, the synthetic potential of this technique is still far from established. Even in the already commercialized crystal growth of GaN substrates, various technical obstacles remain, partly because of lack of materials for high pressure equipment sufficiently resistant against the aggressive medium and at the same time persistent at the process conditions, but clearly because of insufficient understanding of the chemical and physical processes in supercritical ammonia. Still, many novel nitrides already emerge from ammonothermal synthesis. This technique has already proven to hold great prospects in crystal growth of the other group III nitrides, AlN and InN, relevant from a technical point of view, and substitution variant among those nitrides with further trivalent ions. Huge potential was also demonstrated for synthesis of further hard to produce nitrides as nitridosilicates, nitridophosphates and similar compounds, or oxide nitride perovskites. With increasing understanding of the physiochemical background and concomitant extension of the accessible process parameters we definitely will see great advances in the ammonothermal synthesis of novel materials for future applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29 (2014) T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29 (2014)
2.
go back to reference Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016) CrossRef Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016) CrossRef
3.
go back to reference J.S.J. Hargreaves, Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 257, 2015 (2013) CrossRef J.S.J. Hargreaves, Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 257, 2015 (2013) CrossRef
4.
go back to reference M.A. Moram, S. Zhang, ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A 2, 6042 (2014) CrossRef M.A. Moram, S. Zhang, ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A 2, 6042 (2014) CrossRef
5.
go back to reference A. Dittmar, J. Wollweber, M. Schmidbauer, D. Klimm, C. Hartmann, M. Bickermann, Physical vapor transport growth of bulk Al 1–xSc xN single crystals. J. Cryst. Growth 500, 74 (2018) CrossRef A. Dittmar, J. Wollweber, M. Schmidbauer, D. Klimm, C. Hartmann, M. Bickermann, Physical vapor transport growth of bulk Al 1–xSc xN single crystals. J. Cryst. Growth 500, 74 (2018) CrossRef
6.
go back to reference J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864 (2018) CrossRef J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864 (2018) CrossRef
7.
go back to reference J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017) CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017) CrossRef
8.
go back to reference J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV=Si, Ge). Chem. Eur. J. 24, 1686 (2018) CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV=Si, Ge). Chem. Eur. J. 24, 1686 (2018) CrossRef
9.
go back to reference U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175 (1990) CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175 (1990) CrossRef
10.
go back to reference J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018) CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018) CrossRef
11.
go back to reference J. Häusler, Ammonothermal synthesis of ternary nitride semiconductors and novel multinary nitrides. Dissertation, LMU München, Germany (2018) J. Häusler, Ammonothermal synthesis of ternary nitride semiconductors and novel multinary nitrides. Dissertation, LMU München, Germany (2018)
12.
go back to reference F. Karau, W. Schnick, High-pressure synthesis and X-ray powder structure determination of the nitridophosphate BaP 2N 4. J. Solid State Chem. 178, 135 (2005) CrossRef F. Karau, W. Schnick, High-pressure synthesis and X-ray powder structure determination of the nitridophosphate BaP 2N 4. J. Solid State Chem. 178, 135 (2005) CrossRef
13.
go back to reference F.W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, The stuffed framework structure of SrP 2N 4: challenges to synthesis and crystal structure determination. Chem. Eur. J. 13, 6841 (2007) CrossRef F.W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, The stuffed framework structure of SrP 2N 4: challenges to synthesis and crystal structure determination. Chem. Eur. J. 13, 6841 (2007) CrossRef
14.
go back to reference H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K 3P 6N 11. Z. Anorg. Allg. Chem. 623, 429 (1997) CrossRef H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K 3P 6N 11. Z. Anorg. Allg. Chem. 623, 429 (1997) CrossRef
15.
go back to reference M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg 2PN 3 and Zn 2PN 3. Chem. Eur. J. 24, 13963 (2018) CrossRef M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg 2PN 3 and Zn 2PN 3. Chem. Eur. J. 24, 13963 (2018) CrossRef
16.
go back to reference L. Sagarna, K.Z. Rushchanskii, A. Maegli, S. Yoon, S. Populoh, A. Shkabko, S. Pokrant, M. Ležaić, R. Waser, A. Weidenkaff, Structure and thermoelectric properties of EuTi(O, N) (3 ± δ). J. Appl. Phys. 114, 033701 (2013) CrossRef L. Sagarna, K.Z. Rushchanskii, A. Maegli, S. Yoon, S. Populoh, A. Shkabko, S. Pokrant, M. Ležaić, R. Waser, A. Weidenkaff, Structure and thermoelectric properties of EuTi(O, N) (3 ± δ). J. Appl. Phys. 114, 033701 (2013) CrossRef
17.
go back to reference A.E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K. Domen, A. Weidenkaff, Enhancement of photocatalytic water oxidation by the morphological control of LaTiO 2N and cobalt oxide catalysts. J. Phys. Chem. C 118, 16344 (2014) CrossRef A.E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K. Domen, A. Weidenkaff, Enhancement of photocatalytic water oxidation by the morphological control of LaTiO 2N and cobalt oxide catalysts. J. Phys. Chem. C 118, 16344 (2014) CrossRef
18.
go back to reference S.G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Müller, A. Reller, A. Weidenkaff, Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173 (2009) CrossRef S.G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Müller, A. Reller, A. Weidenkaff, Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173 (2009) CrossRef
19.
go back to reference N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 (Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017) CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 (Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017) CrossRef
20.
go back to reference W. Li, E. Ionescu, R. Riedel, A. Gurlo, Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. 1, 12239 (2013) CrossRef W. Li, E. Ionescu, R. Riedel, A. Gurlo, Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. 1, 12239 (2013) CrossRef
21.
go back to reference A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009) CrossRef A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009) CrossRef
22.
go back to reference T. Oshima, T. Ichibha, S.Q. Ken, K. Muraoka, J. J.M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama, K. Maeda, Undoped Layered Perovskite Oxynitride Li 2LaTa 2O 6N for Photocatalytic CO 2 Reduction with Visible Light. Angew. Chem. 30, 8286 (2018); Angew. Chem. Int. Ed. 57, 8154 (2018) T. Oshima, T. Ichibha, S.Q. Ken, K. Muraoka, J. J.M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama, K. Maeda, Undoped Layered Perovskite Oxynitride Li 2LaTa 2O 6N for Photocatalytic CO 2 Reduction with Visible Light. Angew. Chem. 30, 8286 (2018); Angew. Chem. Int. Ed. 57, 8154 (2018)
23.
go back to reference R. Sarmiento-Pérez, T.F.T. Cerqueira, S. Körbel, S. Botti, M.A.L. Marques, Prediction of stable nitride perovskites. Chem. Mater. 27, 5957 (2015) CrossRef R. Sarmiento-Pérez, T.F.T. Cerqueira, S. Körbel, S. Botti, M.A.L. Marques, Prediction of stable nitride perovskites. Chem. Mater. 27, 5957 (2015) CrossRef
24.
go back to reference S. Pimputkar, S. Nakamura, Decomposition of supercritical ammonia and modeling of supercritical ammonia–nitrogen–hydrogen solutions with applicability toward ammonothermal conditions. J. Supercrit. Fluids 107, 17 (2016) CrossRef S. Pimputkar, S. Nakamura, Decomposition of supercritical ammonia and modeling of supercritical ammonia–nitrogen–hydrogen solutions with applicability toward ammonothermal conditions. J. Supercrit. Fluids 107, 17 (2016) CrossRef
25.
go back to reference R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966); Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966); Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)
Metadata
Title
Ammonothermal Materials
Authors
Wolfgang Schnick
Niklas Cordes
Mathias Mallmann
Rainer Niewa
Elke Meissner
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_18