Skip to main content
Top

2024 | OriginalPaper | Chapter

An Active Learning Approach Using Clustering-Based Initialization for Time Series Classification

Authors : Fatma Saniye Koyuncu, Tülin İnkaya

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the application of active learning for time series classification, a prevalent issue in various industries. With the increasing digitalization, the need for labeled data to train AI models has grown, but acquiring such data can be costly and resource-intensive. The chapter introduces a clustering-based initialization method using k-medoid clustering to select the most representative samples for labeling. The proposed approach employs the k-nearest-neighbor (KNN) algorithm for classification and uncertainty sampling for query selection during active learning. The method is evaluated using sensor data from production and healthcare systems, demonstrating its effectiveness in achieving high classification accuracy with a small number of labeled samples. The chapter also provides a comprehensive literature review, comparing the proposed approach with existing methods and highlighting its unique advantages in tackling real-life time series classification problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar, P., Gupta, A.: Active learning query strategies for classification, regression, and clustering: a survey. J. Comput. Sci. Technol. 35(4), 913–945 (2020)CrossRef Kumar, P., Gupta, A.: Active learning query strategies for classification, regression, and clustering: a survey. J. Comput. Sci. Technol. 35(4), 913–945 (2020)CrossRef
3.
4.
go back to reference Settles, B.: Active learning literature survey. Technical report, University of Winconsin-Madison Department of Computer Sciences (2009) Settles, B.: Active learning literature survey. Technical report, University of Winconsin-Madison Department of Computer Sciences (2009)
5.
go back to reference Gweon, H., Yu, H.: A nearest neighbor-based active learning method and its application to time series classification. Pattern Recogn. Lett. 146, 230–236 (2021)CrossRef Gweon, H., Yu, H.: A nearest neighbor-based active learning method and its application to time series classification. Pattern Recogn. Lett. 146, 230–236 (2021)CrossRef
6.
go back to reference He, G., Li, Y., Zhao, W.: An uncertainty and density based active semi-supervised learning scheme for positive unlabeled multivariate time series classification. Knowl.-Based Syst. 124, 80–92 (2017)CrossRef He, G., Li, Y., Zhao, W.: An uncertainty and density based active semi-supervised learning scheme for positive unlabeled multivariate time series classification. Knowl.-Based Syst. 124, 80–92 (2017)CrossRef
7.
go back to reference Saeedi, R., Sasani, K., Gebremedhin, A.H.: Co-meal: cost-optimal multi-expert active learning architecture for mobile health monitoring. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 432–441 (2017) Saeedi, R., Sasani, K., Gebremedhin, A.H.: Co-meal: cost-optimal multi-expert active learning architecture for mobile health monitoring. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 432–441 (2017)
8.
go back to reference Peng, F., Luo, Q., Ni, L.M.: ACTS: an active learning method for time series classification. In: IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, pp. 175–178 (2017) Peng, F., Luo, Q., Ni, L.M.: ACTS: an active learning method for time series classification. In: IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, pp. 175–178 (2017)
9.
go back to reference Zhang, J., Dai, Q.: A cost-sensitive active learning algorithm: toward imbalanced time series forecasting. Neural Comput. Appl. 34(9), 6953–6972 (2022)CrossRef Zhang, J., Dai, Q.: A cost-sensitive active learning algorithm: toward imbalanced time series forecasting. Neural Comput. Appl. 34(9), 6953–6972 (2022)CrossRef
10.
go back to reference Shim, J., Kang, S., Cho, S.: Active cluster annotation for wafer map pattern classification in semiconductor manufacturing. Expert Syst. Appl. 183, 115429 (2021)CrossRef Shim, J., Kang, S., Cho, S.: Active cluster annotation for wafer map pattern classification in semiconductor manufacturing. Expert Syst. Appl. 183, 115429 (2021)CrossRef
11.
go back to reference Qi, L., Ting, L.: Active semi-supervised affinity propagation clustering algorithm based on local outlier factor. In: 37th Chinese Control Conference (CCC), Wuhan, China, pp. 9368–9373 (2018) Qi, L., Ting, L.: Active semi-supervised affinity propagation clustering algorithm based on local outlier factor. In: 37th Chinese Control Conference (CCC), Wuhan, China, pp. 9368–9373 (2018)
12.
go back to reference Mai, S.T., He, X., Hubig, N., Plant, C., Böhm, C.: Active density-based clustering. In: IEEE 13th International Conference on Data Mining, Dallas, TX, USA, pp. 508–517 (2013) Mai, S.T., He, X., Hubig, N., Plant, C., Böhm, C.: Active density-based clustering. In: IEEE 13th International Conference on Data Mining, Dallas, TX, USA, pp. 508–517 (2013)
13.
go back to reference Grimova, N., Macas, M., Gerla, V.: Addressing the cold start problem in active learning approach used for semi-automated sleep stages classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, pp. 2249–2253 (2018) Grimova, N., Macas, M., Gerla, V.: Addressing the cold start problem in active learning approach used for semi-automated sleep stages classification. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, pp. 2249–2253 (2018)
14.
go back to reference Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the 21st International Conference on Machine Learning, Banff, Canada (2004) Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the 21st International Conference on Machine Learning, Banff, Canada (2004)
15.
go back to reference Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Waltham (2012)MATH Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Waltham (2012)MATH
16.
go back to reference Almomany, A., Ayyad, W.R., Jarrah, A.: Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study. J. King Saud University Comput. Inf. Sci. 34(6), 3815–3827 (2022) Almomany, A., Ayyad, W.R., Jarrah, A.: Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study. J. King Saud University Comput. Inf. Sci. 34(6), 3815–3827 (2022)
17.
go back to reference Prudencio, R.B.C., Carlos, S., Ludermir, T.B.: Uncertainty sampling methods for selecting datasets in active meta-learning. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1082–1089. IEEE, San Jose (2011) Prudencio, R.B.C., Carlos, S., Ludermir, T.B.: Uncertainty sampling methods for selecting datasets in active meta-learning. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1082–1089. IEEE, San Jose (2011)
Metadata
Title
An Active Learning Approach Using Clustering-Based Initialization for Time Series Classification
Authors
Fatma Saniye Koyuncu
Tülin İnkaya
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_21

Premium Partners