Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-04-2020 | Issue 4/2020

Cognitive Computation 4/2020

An Adaptive Fuzzy Predictive Controller with Hysteresis Compensation for Piezoelectric Actuators

Journal:
Cognitive Computation > Issue 4/2020
Authors:
Ang Wang, Long Cheng, Chenguang Yang, Zeng-Guang Hou
Important notes

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Piezoelectric actuators (PEAs) are the pivotal components of many nanopositioning systems because of their superiorities in bandwidth, mechanical force, and precision. Unfortunately, the intrinsic nonlinear property, hysteresis, makes it difficult to achieve the precise control of PEAs. Considering this drawback, diversified feedback control approaches have been studied in the literature. Inspired by the idea that the involvement of feedforward terms can upgrade the tracking performance, our previous conference paper proposed a novel feedforward–feedback control approach (model predictive control with hysteresis compensation). Following the previous work, an adaptive fuzzy predictive controller with hysteresis compensation is further studied in this paper. The major improvement of the proposed method is the employment of adaptive fuzzy model, by which the dynamic model of PEAs is able to adjust in real time, resulting in a better control performance. To validate the effectiveness of the proposed method, extensive experiments are conducted on a Physik Instrumente P-753.1CD piezoelectric nanopositioning stage. Comparisons with several existing control approaches are carried out, and the root mean square tracking error of the proposed method is reduced to 30% of that under the previously proposed neural network model–based predictive control, when tracking 100 Hz sinusoidal reference.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

Cognitive Computation 4/2020 Go to the issue

Premium Partner

    Image Credits