Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

17-02-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

An adaptive kernelized rank-order distance for clustering non-spherical data with high noise

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Tianyi Huang, Shiping Wang, William Zhu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Clustering is a fundamental research topic in unsupervised learning. Similarity measure is a key factor for clustering. However, it is still challenging for existing similarity measures to cluster non-spherical data with high noise levels. Rank-order distance is proposed to well capture the structures of non-spherical data by sharing the neighboring information of the samples, but it cannot well tolerate high noise. In order to address above issue, we propose KROD, a new similarity measure incorporating rank-order distance with Gaussian kernel. By reducing the noise in the neighboring information of samples, KROD improves rank-order distance to tolerate high noise, thus the structures of non-spherical data with high noise levels can be well captured. Then, KROD strengthens these captured structures by Gaussian kernel so that the samples in the same cluster are closer to each other and can be easily clustered correctly. Experiment illustrates that KROD can effectively improve existing methods for discovering non-spherical clusters with high noise levels. The source code can be downloaded from https://​github.​com/​grcai.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue