Skip to main content
Top

2025 | OriginalPaper | Chapter

An Adaptive Upscaling Approach for Assessing Materials’ Circularity Potential with Non-destructive Testing (NDT)

Authors : Ghezal Ahmad Jan Zia, Christoph Völker, Benjamín Moreno Torres, Sabine Kruschwitz

Published in: Proceedings of the RILEM Spring Convention and Conference 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advancing towards a circular economy necessitates the efficient reuse and maintenance of structural materials, which relies on accurate, non-damaging condition assessments. This paper introduces an innovative AI-driven adaptive sampling (AS) technique integrated with Non-Destructive Testing (NDT) to optimize this process. AS focuses on critical data points, reducing the amount of data needed for precise assessments—evidenced by our method requiring on average only 7 samples for Logistic Regression and 8 for Random Forest, contrasted with 29 for traditional sampling.
By reducing the necessity for extensive data collection, our method not only streamlines the assessment process but also significantly contributes to the sustainability goals of the circular economy. These goals include resource efficiency, waste reduction, and material reuse. Efficient condition assessments promote infrastructure longevity, reducing the need for new materials and the associated environmental impact.
The circular economy aims to create a sustainable system where resources are reused, and waste is minimized. This is achieved by extending the lifecycle of materials, reducing the environmental footprint, and promoting recycling and reuse. Longevity directly contributes to the circular economy by maximizing the utility and lifespan of existing materials and structures. Longer-lasting infrastructure means fewer resources are needed for repairs or replacements, leading to reduced material consumption and waste generation. This aligns with the circular economy's principles of sustainability and resource efficiency. This research not only advances the field of structural health monitoring but also aligns with the broader objective of enhancing sustainable construction practices within the circular economy framework.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maierhofer, C., Reinhardt, H.-W., Dobmann, G.: Non-destructive evaluation of reinforced concrete structures: non-destructive testing methods. Elsevier (2010) Maierhofer, C., Reinhardt, H.-W., Dobmann, G.: Non-destructive evaluation of reinforced concrete structures: non-destructive testing methods. Elsevier (2010)
2.
go back to reference Andler, P., Bodie, K., Crotta, G., Pantic, M., Siegwart, T., Angst, U.: Non-destructive corrosion inspection of reinforced concrete structures using an autonomous flying robot. Autom. Construct. 158 (2024) Andler, P., Bodie, K., Crotta, G., Pantic, M., Siegwart, T., Angst, U.: Non-destructive corrosion inspection of reinforced concrete structures using an autonomous flying robot. Autom. Construct. 158 (2024)
3.
go back to reference Mehrotra, A., Yi, H.: Effect of adaptive intelligent sampling and machine-learning emulators in surrogate energy modeling of architectural massing. J. Build. Eng. 72, 106 (2023) Mehrotra, A., Yi, H.: Effect of adaptive intelligent sampling and machine-learning emulators in surrogate energy modeling of architectural massing. J. Build. Eng. 72, 106 (2023)
4.
go back to reference Dubout, C., Fleuret, F.: Adaptive sampling for large scale boosting. J. Mach. Learn. Res. 1431–1453 (2014) Dubout, C., Fleuret, F.: Adaptive sampling for large scale boosting. J. Mach. Learn. Res. 1431–1453 (2014)
5.
go back to reference Trampert, P., et al.: Deep neural networks for analysis of microscopy images—synthetic data generation and adaptive sampling. Crystals 11, 258 (2021) Trampert, P., et al.: Deep neural networks for analysis of microscopy images—synthetic data generation and adaptive sampling. Crystals 11, 258 (2021)
6.
go back to reference Hussain, A., Akhtar, S.: Review of non-destructive tests for evaluation of historic masonry and concrete structures. Arabian J. Sci. Eng. 42, 925–940 (2017) Hussain, A., Akhtar, S.: Review of non-destructive tests for evaluation of historic masonry and concrete structures. Arabian J. Sci. Eng. 42, 925–940 (2017)
7.
go back to reference Capozzoli, L.,Rizzo, L.: Combined NDT techniques in civil engineering applications: Laboratory and real test. Construct. Build. Mater. 154, 1139–1150 (2017) Capozzoli, L.,Rizzo, L.: Combined NDT techniques in civil engineering applications: Laboratory and real test. Construct. Build. Mater. 154, 1139–1150 (2017)
8.
go back to reference Volker, C., Kruschwitz, S., Ebell, G.: A machine learning-based data fusion approach for improved corrosion testing. Surv. Geophys. 41, 531–548 (2020) Volker, C., Kruschwitz, S., Ebell, G.: A machine learning-based data fusion approach for improved corrosion testing. Surv. Geophys. 41, 531–548 (2020)
9.
go back to reference Volker, C., Kruschwitz, S., Ebell, G.: A machine learning-based data fusion approach for improved corrosion testing. Surv. Geophys. 41, 531–548 Volker, C., Kruschwitz, S., Ebell, G.: A machine learning-based data fusion approach for improved corrosion testing. Surv. Geophys. 41, 531–548
10.
go back to reference Wen, C., et al.: Machine learning assisted design of high entropy alloys with desired property. Acta Materialia 170, 109–117 (2019) Wen, C., et al.: Machine learning assisted design of high entropy alloys with desired property. Acta Materialia 170, 109–117 (2019)
11.
go back to reference Ling, J., Hutchinson, M., Antono, E., Paradiso, S., Meredig, B.: High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integrat. Mater. Manufac. Innov. 6, 207–217 (2017) Ling, J., Hutchinson, M., Antono, E., Paradiso, S., Meredig, B.: High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integrat. Mater. Manufac. Innov. 6, 207–217 (2017)
13.
go back to reference Chatterjee, S., Deering, C., Waite, G.P., Prandi, C., Lin, P.: An adaptive sampling strategy developed for studies of diffuse volcanic soil gas emissions. J. Volcanol. Geotherm. Res. 246–261 (2019) Chatterjee, S., Deering, C., Waite, G.P., Prandi, C., Lin, P.: An adaptive sampling strategy developed for studies of diffuse volcanic soil gas emissions. J. Volcanol. Geotherm. Res. 246–261 (2019)
Metadata
Title
An Adaptive Upscaling Approach for Assessing Materials’ Circularity Potential with Non-destructive Testing (NDT)
Authors
Ghezal Ahmad Jan Zia
Christoph Völker
Benjamín Moreno Torres
Sabine Kruschwitz
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-70277-8_38