Skip to main content
Top

2020 | OriginalPaper | Chapter

An Advanced Nonlinear Control Approach for Aluminum Reduction Process

Authors : Jing Shi, Yuchen Yao, Jie Bao, Maria Skyllas-Kazacos, Barry J. Welch, Ali Jassim

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the increase in amperage and associated reduction of electrolyte volume to anode surface ratio, the existing cell control method is facing more challenges due to greater variability in process conditions spatially and temporally. Therefore, it is beneficial to develop advanced control strategies that can achieve a more balanced cell with even distribution of, e.g., alumina concentration and individual anode current, and hence improve energy efficiency and reduce greenhouse gas emission. In this paper, an advanced nonlinear control approach is developed, which determines the optimal local control actions based on the measurements including the individual anode current and cell voltage. This new approach is flexible as it can optimize the control action to achieve different cell performance targets. This work illustrates the effectiveness of the proposed control with an example of improving the current efficiency. Also, different performance targets are discussed, which provide the potential for the proposed control method to have optimal control targets for best cell efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Grjotheim K, Welch BJ (1988). Aluminium smelter technology–a pure and applied approach. Aluminium-Verlag, Konigsallee. Grjotheim K, Welch BJ (1988). Aluminium smelter technology–a pure and applied approach. Aluminium-Verlag, Konigsallee.
2.
go back to reference Yao Y, Cheung CY, Bao J, Skyllas-Kazacos M, Welch BJ, Akhmetov S (2017) Estimation of spatial alumina concentration in an aluminium reduction cell using a multilevel state observer. AIChE 68(7): 2806–2818. Yao Y, Cheung CY, Bao J, Skyllas-Kazacos M, Welch BJ, Akhmetov S (2017) Estimation of spatial alumina concentration in an aluminium reduction cell using a multilevel state observer. AIChE 68(7): 2806–2818.
3.
go back to reference Haupin W (1998) Interpreting the components of cell voltage. Light Metals 1998, TMS, p 531–537. Haupin W (1998) Interpreting the components of cell voltage. Light Metals 1998, TMS, p 531–537.
4.
go back to reference Jessen SW (2008) Mathematical modelling of a Hall-Héroult aluminium reduction cell. Master thesis, Technical University of Denmark. Jessen SW (2008) Mathematical modelling of a Hall-Héroult aluminium reduction cell. Master thesis, Technical University of Denmark.
5.
go back to reference Jens B (1992) A method for the control of alumina concentration in aluminium reduction cells. Modeling, Identification and Control 13(1): 41–49. Jens B (1992) A method for the control of alumina concentration in aluminium reduction cells. Modeling, Identification and Control 13(1): 41–49.
6.
go back to reference Johannes A (1986) Adaptive control of alumina. MIC 7: 45–56. Johannes A (1986) Adaptive control of alumina. MIC 7: 45–56.
7.
go back to reference Kvande H, Moxnes BP, Skaar J, Solli PA (1997) Pseudo resistance curves for aluminium cell control - alumina dissolution and cell dynamics. Light Metals 1997, TMS, p 403–409. Kvande H, Moxnes BP, Skaar J, Solli PA (1997) Pseudo resistance curves for aluminium cell control - alumina dissolution and cell dynamics. Light Metals 1997, TMS, p 403–409.
8.
go back to reference McFadden FJS, Bearne GP, Austin PC, Welch BJ (2001) Application of advanced process control to aluminium reduction cells–a review. Light Metals 2001, TMS, p 1233–1242. McFadden FJS, Bearne GP, Austin PC, Welch BJ (2001) Application of advanced process control to aluminium reduction cells–a review. Light Metals 2001, TMS, p 1233–1242.
9.
go back to reference Gran E (1980) A multi-variable control in aluminum reduction cells. Modeling Identification and Control. 1(4): 247–258. Gran E (1980) A multi-variable control in aluminum reduction cells. Modeling Identification and Control. 1(4): 247–258.
10.
go back to reference Moore KL, Urata N (2001) Multivariable control of aluminum reduction cells. Light Metals 2001, TMS, p 1243–1249. Moore KL, Urata N (2001) Multivariable control of aluminum reduction cells. Light Metals 2001, TMS, p 1243–1249.
11.
go back to reference McFadden FJS, Welch BJ, Austin PC (2006) The multivariable model-based control of the non-alumina electrolyte variables in aluminium smelting cells. JOM 58(2): 42–47. McFadden FJS, Welch BJ, Austin PC (2006) The multivariable model-based control of the non-alumina electrolyte variables in aluminium smelting cells. JOM 58(2): 42–47.
12.
go back to reference Kolås S, Wasbø SO (2010) A nonlinear model-based control strategy for the aluminium electrolysis process. Light Metals 2010, TMS, p 501–505. Kolås S, Wasbø SO (2010) A nonlinear model-based control strategy for the aluminium electrolysis process. Light Metals 2010, TMS, p 501–505.
13.
go back to reference Kolås S (2009) Method and means for controlling an electrolysis cell. International Patent WO 2009/067019A1, 28 May 2009. Kolås S (2009) Method and means for controlling an electrolysis cell. International Patent WO 2009/067019A1, 28 May 2009.
14.
go back to reference Moxnes B, Solheim A, Liane M, Svinsås E, Halkjelsvik A (2009) Improved cell operation by redistribution of the alumina feeding. Light Metals 2009, TMS, p 461–466. Moxnes B, Solheim A, Liane M, Svinsås E, Halkjelsvik A (2009) Improved cell operation by redistribution of the alumina feeding. Light Metals 2009, TMS, p 461–466.
15.
go back to reference Shi J, Wong CJ, Yao Y, Bao J, Skylla-Kazacos M, Welch BJ (2018) Advanced feeding control of the aluminium reduction process. Paper presented at the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand. Shi J, Wong CJ, Yao Y, Bao J, Skylla-Kazacos M, Welch BJ (2018) Advanced feeding control of the aluminium reduction process. Paper presented at the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand.
16.
go back to reference Biedler P (2003) Modeling of an aluminum reduction cell for the development of a state estimator. PhD thesis, West Virginia University. Biedler P (2003) Modeling of an aluminum reduction cell for the development of a state estimator. PhD thesis, West Virginia University.
17.
go back to reference Haverkamp RJ, Welch BJ (1997) Modelling the dissolution of alumina powder in cryolite. Chemical Engineering and Processing. 3: 177–187. Haverkamp RJ, Welch BJ (1997) Modelling the dissolution of alumina powder in cryolite. Chemical Engineering and Processing. 3: 177–187.
18.
go back to reference Potocnik V, Arkhipov A, Ahli N, Alzarooni A (2017) Measurement of DC busbar currents in aluminium smelters. Proceedings of 35th International ICSOBA Conference, Hamburg, Germany, Travaux 46, 1113–1128. Potocnik V, Arkhipov A, Ahli N, Alzarooni A (2017) Measurement of DC busbar currents in aluminium smelters. Proceedings of 35th International ICSOBA Conference, Hamburg, Germany, Travaux 46, 1113–1128.
19.
go back to reference Cheung CY, Menictas C, Bao J, Skyllas-Kazacos M, Welch BJ (2013) Characterization of individual anode current signals in aluminum reduction cells. Industrial & Engineering Chemistry Research. 52(28): 9632–9644. Cheung CY, Menictas C, Bao J, Skyllas-Kazacos M, Welch BJ (2013) Characterization of individual anode current signals in aluminum reduction cells. Industrial & Engineering Chemistry Research. 52(28): 9632–9644.
20.
go back to reference Zhang H, Li T, Li J, Yang S, Zou Z (2016) Progress in aluminum electrolysis control and future direction for smart aluminum electrolysis plant. JOM 69(2): 292–300. Zhang H, Li T, Li J, Yang S, Zou Z (2016) Progress in aluminum electrolysis control and future direction for smart aluminum electrolysis plant. JOM 69(2): 292–300.
21.
go back to reference Tarcy GP, Tørklep K (2005) Current efficiency in prebake and Søderberg cells. Light Metals 2005, TMS, p 319–324. Tarcy GP, Tørklep K (2005) Current efficiency in prebake and Søderberg cells. Light Metals 2005, TMS, p 319–324.
22.
go back to reference Robilliard KR, Rolofs B (1989) A demand feed strategy for aluminium electrolysis cells. Light Metals 1989, TMS, p 269–273. Robilliard KR, Rolofs B (1989) A demand feed strategy for aluminium electrolysis cells. Light Metals 1989, TMS, p 269–273.
23.
go back to reference Guérard S, Côté P (2019) A transient model of the anodic current distribution in an aluminum electrolysis cell. Light Metals 2019, TMS, p 595–603. Guérard S, Côté P (2019) A transient model of the anodic current distribution in an aluminum electrolysis cell. Light Metals 2019, TMS, p 595–603.
Metadata
Title
An Advanced Nonlinear Control Approach for Aluminum Reduction Process
Authors
Jing Shi
Yuchen Yao
Jie Bao
Maria Skyllas-Kazacos
Barry J. Welch
Ali Jassim
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_77

Premium Partners