Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

17-12-2019 | Original Article | Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

An adversarial non-volume preserving flow model with Boltzmann priors

Journal:
International Journal of Machine Learning and Cybernetics > Issue 4/2020
Authors:
Jian Zhang, Shifei Ding, Weikuan Jia
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Flow-based generative models (flow models) are conceptually attractive due to tractability of the exact log-likelihood and the exact latent-variable inference. In order to generate sharper images and extend the Gaussian prior of Flow models to other discrete forms, we propose an adversarial non-volume preserving flow model with Boltzmann priors (ANVP) for modeling complex high-dimensional densities. In order to generate sharper images, an ANVP model introduces an adversarial regularizer into the loss function to penalize the condition that it places a high probability in regions where the training data distribution has a low density. Moreover, we show that the Gaussian prior can be extended to other forms such as the Boltzmann prior in the proposed ANVP model, and we use multi-scale transformations and Boltzmann priors to model the data distribution. The experiments show that proposed model is effective in image generation task.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue