Skip to main content
Top

2023 | OriginalPaper | Chapter

An Agent-Based Cellular Automata Model for Urban Road Traffic Flow Considering Connected and Automated Vehicles

Authors : Wang Jinghui, Lv Wei, Jiang Yajuan, Qin Shuangshuang, Huang Guangchen

Published in: Green Transportation and Low Carbon Mobility Safety

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Considering the development of the vehicle to vehicle (V2V) technology and the popularisation of connected and automated vehicles (CAVs), for an extended period, urban roads will be in a mixed traffic flow scene where CAVs and human-driven vehicles (HDVs) coexist. This paper uses an agent-based cellular automata model to establish a micro-traffic simulation framework for urban roads, called the ABCA-MS model. Considering the characteristics of the intermittent flow of urban roads and signal light control, corresponding car-following and lane-changing rules are established and applied to simulate mixed traffic flow containing CAVs. The simulation results show that the traffic efficiency and the permeability of CAVs show a positive correlation; under the given traffic volume condition, the critical CAVs penetration rate for a traffic state change from congestion to unblocked is 0.4. When the penetration rate of CAVs is in the range of 0–0.4, the improvement of road traffic efficiency is the most significant, and the effect of improvement gradually slows down with the increase of CAVs penetration. Even with a low penetration rate of CAVS, the road capacity can be effectively improved, and the traffic pressure can be alleviated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bagloee SA, Tavana M, Asadi M, Oliver T (2016) Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. J Mod Transp 24:284–303CrossRef Bagloee SA, Tavana M, Asadi M, Oliver T (2016) Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. J Mod Transp 24:284–303CrossRef
2.
go back to reference Hong D, Kimmel S, Boehling R, Camoriano N, Cardwell W, Jannaman G, Purcell A, Ross D, Russel E (2008) Development of a semi-autonomous vehicle operable by the visually-impaired. In: Proceedings of IEEE International conference on multisensor fusion and integration for intelligent systems, pp 539–544 Hong D, Kimmel S, Boehling R, Camoriano N, Cardwell W, Jannaman G, Purcell A, Ross D, Russel E (2008) Development of a semi-autonomous vehicle operable by the visually-impaired. In: Proceedings of IEEE International conference on multisensor fusion and integration for intelligent systems, pp 539–544
3.
go back to reference Litman T (2015) Autonomous vehicle implementation predictions. Victoria Transport Policy Institute, No 15-3326 Litman T (2015) Autonomous vehicle implementation predictions. Victoria Transport Policy Institute, No 15-3326
4.
go back to reference Fenton RE, Mayhan RJ (1991) Automated highway studies at the ohio state university-an overview. IEEE Trans Veh Technol 40:100–113CrossRef Fenton RE, Mayhan RJ (1991) Automated highway studies at the ohio state university-an overview. IEEE Trans Veh Technol 40:100–113CrossRef
5.
go back to reference Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulation. Phys Rev E 62:1805–1824CrossRefMATH Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulation. Phys Rev E 62:1805–1824CrossRefMATH
6.
go back to reference Shladover SE, Desoer CA, Hedrick JK, Tomizuka M (1991) Automatic vehicle control developments in the PATH program. IEEE Trans Veh Technol 40:114–130CrossRef Shladover SE, Desoer CA, Hedrick JK, Tomizuka M (1991) Automatic vehicle control developments in the PATH program. IEEE Trans Veh Technol 40:114–130CrossRef
7.
go back to reference Rajamani R, Tan HS, Law BK, Zhang WB (2000) Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans Control Syst Veh Technol 8:695–708CrossRef Rajamani R, Tan HS, Law BK, Zhang WB (2000) Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans Control Syst Veh Technol 8:695–708CrossRef
8.
go back to reference Milanés V, Shladover SE, Spring J, Nowakowski C, Kawazoe H, Nakamura M (2014) Cooperative adaptive cruise control in real traffic situations. IEEE Trans Intell Transp Syst 15:296–305CrossRef Milanés V, Shladover SE, Spring J, Nowakowski C, Kawazoe H, Nakamura M (2014) Cooperative adaptive cruise control in real traffic situations. IEEE Trans Intell Transp Syst 15:296–305CrossRef
9.
go back to reference Milanés V, Shladover SE (2014) Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp Res Pt C Emerg Technol 48:285–300CrossRef Milanés V, Shladover SE (2014) Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp Res Pt C Emerg Technol 48:285–300CrossRef
10.
go back to reference Yao ZH, Xu T, Jiang YS, Hu R (2021) Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time. Phys A 561:125218MathSciNetCrossRefMATH Yao ZH, Xu T, Jiang YS, Hu R (2021) Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time. Phys A 561:125218MathSciNetCrossRefMATH
11.
go back to reference Yao ZH, Hu R, Jiang YS, Xu TR (2020) Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways. J Saf Res 75:262–274CrossRef Yao ZH, Hu R, Jiang YS, Xu TR (2020) Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways. J Saf Res 75:262–274CrossRef
12.
go back to reference Yao ZH, Hu R, Wang Y, Jiang YS, Ran B, Chen YR (2019) Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles. Phys A 533:121931MathSciNetCrossRefMATH Yao ZH, Hu R, Wang Y, Jiang YS, Ran B, Chen YR (2019) Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles. Phys A 533:121931MathSciNetCrossRefMATH
13.
go back to reference Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64:01701CrossRef Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64:01701CrossRef
14.
go back to reference Kuang H, Xu ZP, Li XL, Lo SM (2017) An extended car-following model accounting for the average headway effect in intelligent transportation system. Phys A 471:778–787MathSciNetCrossRefMATH Kuang H, Xu ZP, Li XL, Lo SM (2017) An extended car-following model accounting for the average headway effect in intelligent transportation system. Phys A 471:778–787MathSciNetCrossRefMATH
15.
go back to reference Kerner BS (2018) Physics of automated driving in framework of three-phase traffic theory. Phys Rev E 97:042303CrossRef Kerner BS (2018) Physics of automated driving in framework of three-phase traffic theory. Phys Rev E 97:042303CrossRef
16.
go back to reference Rios-Torres J, Malikopoulos AA (2018) Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow. IEEE Trans Intell Transp Syst 3:1–10 Rios-Torres J, Malikopoulos AA (2018) Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow. IEEE Trans Intell Transp Syst 3:1–10
17.
go back to reference Gipps PG (1986) A model for the structure of lane-changing decisions. Transp Res Pt B-Methodol 20:403–414CrossRef Gipps PG (1986) A model for the structure of lane-changing decisions. Transp Res Pt B-Methodol 20:403–414CrossRef
18.
go back to reference Wang M, Treiber M, Daamen W, Hoogendoorn SP, Arem BV (2013) Modelling supported driving as an optimal control cycle: framework and model characteristics. Transp Res Pt C-Emerg Technol 36:547–563CrossRef Wang M, Treiber M, Daamen W, Hoogendoorn SP, Arem BV (2013) Modelling supported driving as an optimal control cycle: framework and model characteristics. Transp Res Pt C-Emerg Technol 36:547–563CrossRef
19.
go back to reference Talebpour HS, Mahmassani SH (2011) Hamdar, multiregime sequential risk-taking model of car-following behavior specification, calibration, and sensitivity analysis. Transp Res Record 2260:60–66CrossRef Talebpour HS, Mahmassani SH (2011) Hamdar, multiregime sequential risk-taking model of car-following behavior specification, calibration, and sensitivity analysis. Transp Res Record 2260:60–66CrossRef
20.
go back to reference Talebpour HS (2016) Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp Res Pt C-Emerg Technol 71:143–163CrossRef Talebpour HS (2016) Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp Res Pt C-Emerg Technol 71:143–163CrossRef
22.
23.
go back to reference Lee HK, Barlovic R, Schreckenberg M, Kim D (2004) Mechanical restriction versus human overreaction triggering congested traffic states. Phys Rev Lett 92:1–4CrossRef Lee HK, Barlovic R, Schreckenberg M, Kim D (2004) Mechanical restriction versus human overreaction triggering congested traffic states. Phys Rev Lett 92:1–4CrossRef
24.
go back to reference Jiang R, Wu QS (2006) The adaptive cruise control vehicles in the cellular automata model. Phys Lett A 359:99–102CrossRef Jiang R, Wu QS (2006) The adaptive cruise control vehicles in the cellular automata model. Phys Lett A 359:99–102CrossRef
25.
go back to reference Yuan YM, Jiang R, Hu MB, Wu QS, Wang RL (2009) Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: a hybrid modelling approach. Phys A 388:2483–2491CrossRef Yuan YM, Jiang R, Hu MB, Wu QS, Wang RL (2009) Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: a hybrid modelling approach. Phys A 388:2483–2491CrossRef
26.
go back to reference Lo SC, Hsu CH (2010) Cellular automata simulation for mixed manual and automated control traffic. Math Comput Modell 51:1000–1007CrossRefMATH Lo SC, Hsu CH (2010) Cellular automata simulation for mixed manual and automated control traffic. Math Comput Modell 51:1000–1007CrossRefMATH
27.
go back to reference Yang D, Qiu XP, Ma LL, Liang HB (2017) Cellular automata–based modeling and simulation of a mixed traffic flow of manual and automated vehicles. Transp Res Record 2622:105–116CrossRef Yang D, Qiu XP, Ma LL, Liang HB (2017) Cellular automata–based modeling and simulation of a mixed traffic flow of manual and automated vehicles. Transp Res Record 2622:105–116CrossRef
28.
go back to reference Wu JC, Chen BK, Zhang K, Zhou J, Miao LX (2018) Ant pheromone route guidance strategy in intelligent transportation systems. Phys A 503:591–603CrossRef Wu JC, Chen BK, Zhang K, Zhou J, Miao LX (2018) Ant pheromone route guidance strategy in intelligent transportation systems. Phys A 503:591–603CrossRef
29.
go back to reference Zhao HT, Liu XR, Chen XX, Lu JC (2018) Cellular automata model for traffic flow at intersections in internet of vehicles. Phys A 494:40–51MathSciNetCrossRefMATH Zhao HT, Liu XR, Chen XX, Lu JC (2018) Cellular automata model for traffic flow at intersections in internet of vehicles. Phys A 494:40–51MathSciNetCrossRefMATH
30.
go back to reference Zhao HT, Zhao X, Lu JC, Xin LY (2020) Cellular automata model for urban road traffic flow considering internet of vehicles and emergency vehicles. J Comput Sci 47:101221CrossRef Zhao HT, Zhao X, Lu JC, Xin LY (2020) Cellular automata model for urban road traffic flow considering internet of vehicles and emergency vehicles. J Comput Sci 47:101221CrossRef
31.
go back to reference Zhao HT, Lin L, Xu CP, Li ZX, Zhao X (2020) Cellular automata model under Kerner’s framework of three-phase traffic theory considering the effect of forward–backward vehicles in internet of vehicles. Phys A 553:124213CrossRef Zhao HT, Lin L, Xu CP, Li ZX, Zhao X (2020) Cellular automata model under Kerner’s framework of three-phase traffic theory considering the effect of forward–backward vehicles in internet of vehicles. Phys A 553:124213CrossRef
32.
go back to reference Gao K, Jiang R, Hu SX, Wang BH, Wu QS (2007) Cellular-automaton model with velocity adaptation in the framework of Kerner’s three-phase traffic theory. Phys Rev E 76:1–7CrossRef Gao K, Jiang R, Hu SX, Wang BH, Wu QS (2007) Cellular-automaton model with velocity adaptation in the framework of Kerner’s three-phase traffic theory. Phys Rev E 76:1–7CrossRef
33.
go back to reference Chen BK, Sun D, Zhou J, Wong WF, Ding ZJ (2020) A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles. Inf Sci 529:59–72MathSciNetCrossRef Chen BK, Sun D, Zhou J, Wong WF, Ding ZJ (2020) A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles. Inf Sci 529:59–72MathSciNetCrossRef
34.
go back to reference Nagel K, Schreckenberg M (1992) A cellular automata model for freeway traffic. J Phys I(2):2221–2229 Nagel K, Schreckenberg M (1992) A cellular automata model for freeway traffic. J Phys I(2):2221–2229
35.
go back to reference Tanimoto J, Futamata M, Tanaka M (2020) Automated vehicle control systems need to solve social dilemmas to be disseminated. Chaos Solitons Fractals 138:109861MathSciNetCrossRefMATH Tanimoto J, Futamata M, Tanaka M (2020) Automated vehicle control systems need to solve social dilemmas to be disseminated. Chaos Solitons Fractals 138:109861MathSciNetCrossRefMATH
36.
go back to reference Zhou YJ, Zhu HB, Guo MM, Zhou JL (2020) Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow. Phys A 540:122721CrossRef Zhou YJ, Zhu HB, Guo MM, Zhou JL (2020) Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow. Phys A 540:122721CrossRef
37.
go back to reference Vranken T, Sliwa B, Wietfeld C, Schreckenberg M (2021) Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles. Phys A 570:125792 Vranken T, Sliwa B, Wietfeld C, Schreckenberg M (2021) Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles. Phys A 570:125792
38.
go back to reference Wang J, Lv W, Jiang Y, Qin S, Li J (2021) A multi-agent based cellular automata model for intersection traffic control simulation. Phys A 584:126356CrossRef Wang J, Lv W, Jiang Y, Qin S, Li J (2021) A multi-agent based cellular automata model for intersection traffic control simulation. Phys A 584:126356CrossRef
39.
go back to reference Chowdhury D, Wolf DE, Schreckenberg M (1997) Particle hopping models for two-lane traffic with two kinds of vehicles: effects of lane changing rules. Phys A 235:417–439CrossRef Chowdhury D, Wolf DE, Schreckenberg M (1997) Particle hopping models for two-lane traffic with two kinds of vehicles: effects of lane changing rules. Phys A 235:417–439CrossRef
Metadata
Title
An Agent-Based Cellular Automata Model for Urban Road Traffic Flow Considering Connected and Automated Vehicles
Authors
Wang Jinghui
Lv Wei
Jiang Yajuan
Qin Shuangshuang
Huang Guangchen
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-5615-7_16

Premium Partner