Skip to main content
Top

2024 | OriginalPaper | Chapter

An AI-Powered Network Intrusion Detection System in Industrial IoT Devices via Deep Learning

Authors : Mohammad Shahin, F. Frank Chen, Ali Hosseinzadeh, Enrique Contreras Lopez, Hamed Bouzary, Hamid Khodadadi Koodiani

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical need for robust network intrusion detection systems in Industrial Internet of Things (IIoT) devices, driven by the increasing vulnerability to cyber-attacks. It introduces various Machine Learning (ML) and Deep Learning (DL) algorithms, highlighting their application in detecting IoT botnet attacks. The study utilizes the N-BaIoT dataset, which encompasses network traffic data from commercial IoT devices infected by notorious botnets like Mirai and Gafgyt. The chapter compares the performance of different DL models, such as Multi-Layer Perceptron (MLP), Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM), and Attention-Based Long Short-Term Memory (ALSTM), among others. The results demonstrate varying accuracies across different devices, with some models, like the 2-CNN, achieving exceptional performance. The chapter concludes by emphasizing the importance of AI-driven systems in enhancing the security of IIoT devices, offering valuable insights into the most effective algorithms for botnet attack detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Donnal, J., McDowell, R., Kutzer, M.: Decentralized IoT with Wattsworth. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6 (2020) Donnal, J., McDowell, R., Kutzer, M.: Decentralized IoT with Wattsworth. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6 (2020)
3.
go back to reference Shahin, M., Chen, F., Bouzary, H., et al.: Classification and Detection of Malicious Attacks in Industrial IoT Devices via Machine Learning. In: Kim, K.-Y., Monplaisir, L., Rickli, J. (eds.) Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus, pp. 99–106. Springer International Publishing, Cham (2023)CrossRef Shahin, M., Chen, F., Bouzary, H., et al.: Classification and Detection of Malicious Attacks in Industrial IoT Devices via Machine Learning. In: Kim, K.-Y., Monplaisir, L., Rickli, J. (eds.) Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus, pp. 99–106. Springer International Publishing, Cham (2023)CrossRef
9.
go back to reference Shahin, M., Ff, C., Bouzary, H., et al.: Implementation of a Novel Fully Convolutional Network Approach to Detect and Classify Cyber-Attacks on IoT Devices in Smart Manufacturing Systems. In: Kim, K.-Y., Monplaisir, L., Rickli, J. (eds.) Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus, pp. 107–114. Springer Interna-tional Publishing, Cham (2023)CrossRef Shahin, M., Ff, C., Bouzary, H., et al.: Implementation of a Novel Fully Convolutional Network Approach to Detect and Classify Cyber-Attacks on IoT Devices in Smart Manufacturing Systems. In: Kim, K.-Y., Monplaisir, L., Rickli, J. (eds.) Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus, pp. 107–114. Springer Interna-tional Publishing, Cham (2023)CrossRef
11.
go back to reference Bishop, C.M.: Bishop P of NCCM (1995) Neural Networks for Pattern Recognition. Clarendon Press (1995) Bishop, C.M.: Bishop P of NCCM (1995) Neural Networks for Pattern Recognition. Clarendon Press (1995)
12.
go back to reference Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media, Inc. (2018) Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media, Inc. (2018)
13.
go back to reference Full article: Prediction of catalytic hydro conversion of normal heptane over catalysts using multi-layer perceptron artificial neural network (ANN-MLP). https://www.tandfonline.com/doi/full/https://doi.org/10.1080/10916466.2018.1517164. Accessed 6 Feb 2023 Full article: Prediction of catalytic hydro conversion of normal heptane over catalysts using multi-layer perceptron artificial neural network (ANN-MLP). https://​www.​tandfonline.​com/​doi/​full/​https://​doi.​org/​10.​1080/​10916466.​2018.​1517164. Accessed 6 Feb 2023
14.
go back to reference Baskar, P., Joseph, M.A., Narayanan, N., Loya, R.B.: Experimental investigation of oxygen enrichment on performance of twin cylinder diesel engine with variation of injection pressure. In: 2013 International Conference on Energy Efficient Technologies for Sustainability, pp. 682–687 (2013) Baskar, P., Joseph, M.A., Narayanan, N., Loya, R.B.: Experimental investigation of oxygen enrichment on performance of twin cylinder diesel engine with variation of injection pressure. In: 2013 International Conference on Energy Efficient Technologies for Sustainability, pp. 682–687 (2013)
15.
go back to reference Ciaburro, G., Venkateswaran, B.: Neural Networks with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing Ltd (2017) Ciaburro, G., Venkateswaran, B.: Neural Networks with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing Ltd (2017)
19.
go back to reference Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585 (2017) Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585 (2017)
21.
go back to reference Alom, M.D.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 339–344 (2015) Alom, M.D.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 339–344 (2015)
Metadata
Title
An AI-Powered Network Intrusion Detection System in Industrial IoT Devices via Deep Learning
Authors
Mohammad Shahin
F. Frank Chen
Ali Hosseinzadeh
Enrique Contreras Lopez
Hamed Bouzary
Hamid Khodadadi Koodiani
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_131

Premium Partner