Skip to main content
Top
Published in: Journal of Scientific Computing 2/2015

01-05-2015

An ALE Formulation for Explicit Runge–Kutta Residual Distribution

Authors: L. Arpaia, M. Ricchiuto, R. Abgrall

Published in: Journal of Scientific Computing | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we consider the solution of hyperbolic conservation laws on moving meshes by means of an Arbitrary Lagrangian Eulerian (ALE) formulation of the Runge–Kutta Residual Distribution (RD) schemes of Ricchiuto and Abgrall (J Comput Phys 229(16):5653–5691, 2010). Up to the authors knowledge, the problem of recasting RD schemes into ALE framework has been solved with first order explicit schemes and with second order implicit schemes. Our resulting scheme is explicit and second order accurate when computing discontinuous solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We assume \(\varvec{a}\) to be constant, however see Sect. 3.3.1.
 
Literature
1.
2.
go back to reference Guardone, A., Isola, D., Quaranta, G.: Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping. J. Comput. Phys. 230(20), 7706–7722 (2011)CrossRefMATHMathSciNet Guardone, A., Isola, D., Quaranta, G.: Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping. J. Comput. Phys. 230(20), 7706–7722 (2011)CrossRefMATHMathSciNet
3.
go back to reference Donea, J.: Computational methods for transient analysis. In: Chapter 10, Arbitrary Lagrangian Eulerian Finite Element Methods. Elsevier Science Publisher, Amsterdam (1983) Donea, J.: Computational methods for transient analysis. In: Chapter 10, Arbitrary Lagrangian Eulerian Finite Element Methods. Elsevier Science Publisher, Amsterdam (1983)
4.
go back to reference Nkonga, B., Guillard, H.: Godunov type method on non-structured meshes for three-dimensional moving boundary problems. Comput. Methods Appl. Mech. Eng. 113(1–2), 183–204 (1994)CrossRefMATHMathSciNet Nkonga, B., Guillard, H.: Godunov type method on non-structured meshes for three-dimensional moving boundary problems. Comput. Methods Appl. Mech. Eng. 113(1–2), 183–204 (1994)CrossRefMATHMathSciNet
5.
go back to reference Guillard, H., Farhat, C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Eng. 190(11–12), 1467–1482 (2000)CrossRefMATHMathSciNet Guillard, H., Farhat, C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Eng. 190(11–12), 1467–1482 (2000)CrossRefMATHMathSciNet
6.
go back to reference Farhat, C., Geuzaine, P., Grandmont, C.: The discrete geometric conservation law and the nonlinaer stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174(2), 669–694 (2000)CrossRefMathSciNet Farhat, C., Geuzaine, P., Grandmont, C.: The discrete geometric conservation law and the nonlinaer stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174(2), 669–694 (2000)CrossRefMathSciNet
7.
go back to reference Ni, R.H.: A multiple grid scheme for solving the euler equation. AIAA J. 20, 1565–1571 (1981) Ni, R.H.: A multiple grid scheme for solving the euler equation. AIAA J. 20, 1565–1571 (1981)
8.
go back to reference Rice, J., Schnipke, R.: A monotone streamline upwind method for convection dominated problems. Comput. Methods Appl. Mech. Eng. 48, 313–327 (1985)CrossRefMATH Rice, J., Schnipke, R.: A monotone streamline upwind method for convection dominated problems. Comput. Methods Appl. Mech. Eng. 48, 313–327 (1985)CrossRefMATH
9.
go back to reference Brooks, A.N., Hughes, T.J.R.: Streamline upwind Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Mech. Eng. 32, 199–259 (1982)CrossRefMATHMathSciNet Brooks, A.N., Hughes, T.J.R.: Streamline upwind Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Mech. Eng. 32, 199–259 (1982)CrossRefMATHMathSciNet
10.
go back to reference Roe, P.L.: Fluctuations and signals—a framework for numerical evolution problems. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluids Dynamics, pp. 219–257. Academic Press, London (1982) Roe, P.L.: Fluctuations and signals—a framework for numerical evolution problems. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluids Dynamics, pp. 219–257. Academic Press, London (1982)
11.
go back to reference Roe, P.L.: Linear Advection Schemes on Triangular Meshes. Technical Report CoA 8720. Cranfield Institute of Technology (1987) Roe, P.L.: Linear Advection Schemes on Triangular Meshes. Technical Report CoA 8720. Cranfield Institute of Technology (1987)
12.
go back to reference Michler, C., Deconinck, H.: An arbitrary Lagrangian Eulerian formulation for residual distribution schemes on moving grids. Comput. Fluids 32(1), 59–71 (2001)CrossRef Michler, C., Deconinck, H.: An arbitrary Lagrangian Eulerian formulation for residual distribution schemes on moving grids. Comput. Fluids 32(1), 59–71 (2001)CrossRef
13.
go back to reference Dobes, J.: Numerical Algorithms for the Computation of Steady and Unsteady Compressible Flow over Moving Geometries—Application to Fluid-Structure Interaction. PhD thesis. Von Karman Institute (2007) Dobes, J.: Numerical Algorithms for the Computation of Steady and Unsteady Compressible Flow over Moving Geometries—Application to Fluid-Structure Interaction. PhD thesis. Von Karman Institute (2007)
14.
go back to reference Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010)CrossRefMATHMathSciNet Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010)CrossRefMATHMathSciNet
16.
go back to reference Carette, J.-C., Deconinck, H., Paillère, H., Roe, P.L.: Multidimensional upwinding: its relation to finite elements. Int. J. Numer. Methods Fluids 20, 935–955 (1995)CrossRefMATH Carette, J.-C., Deconinck, H., Paillère, H., Roe, P.L.: Multidimensional upwinding: its relation to finite elements. Int. J. Numer. Methods Fluids 20, 935–955 (1995)CrossRefMATH
17.
go back to reference Maerz, J., Degrez, G.: Improving Time Accuracy of Residual Distribution Schemes. Technical Report VKI-PR 96-17. von Karman Institute for Fluid Dynamics (1996) Maerz, J., Degrez, G.: Improving Time Accuracy of Residual Distribution Schemes. Technical Report VKI-PR 96-17. von Karman Institute for Fluid Dynamics (1996)
18.
go back to reference Ferrante, A., Deconinck, H.: Solution of the Unsteady Euler Equations Using Residual Distribution and Flux Corrected Transport. Technical Report VKI-PR 97-08, von Karman Institute for Fluid Dynamics (1997) Ferrante, A., Deconinck, H.: Solution of the Unsteady Euler Equations Using Residual Distribution and Flux Corrected Transport. Technical Report VKI-PR 97-08, von Karman Institute for Fluid Dynamics (1997)
19.
go back to reference Abgrall, R., Mezine, M.: Construction of second-order accurate monotone and stable residual distribution schemes for unsteady flow problems. J. Comput. Phys. 188, 16–55 (2003)CrossRefMATHMathSciNet Abgrall, R., Mezine, M.: Construction of second-order accurate monotone and stable residual distribution schemes for unsteady flow problems. J. Comput. Phys. 188, 16–55 (2003)CrossRefMATHMathSciNet
20.
go back to reference Abgrall, R., Barth, T.J.: Residual distribution schemes for conservation laws via adaptive quadrature. SIAM J. Sci. Comput. 24(3), 732–769 (2002)CrossRefMATHMathSciNet Abgrall, R., Barth, T.J.: Residual distribution schemes for conservation laws via adaptive quadrature. SIAM J. Sci. Comput. 24(3), 732–769 (2002)CrossRefMATHMathSciNet
21.
go back to reference Csik, A., Ricchiuto, M., Deconinck, H.: A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys. 179(2), 286–312 (2002)CrossRefMATHMathSciNet Csik, A., Ricchiuto, M., Deconinck, H.: A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys. 179(2), 286–312 (2002)CrossRefMATHMathSciNet
22.
go back to reference Ricchiuto, M., Csik, A., Deconinck, H.: Residual distribution for general time-dependent conservation laws. J. Comput. Phys. 209(1), 249–289 (2005)CrossRefMATHMathSciNet Ricchiuto, M., Csik, A., Deconinck, H.: Residual distribution for general time-dependent conservation laws. J. Comput. Phys. 209(1), 249–289 (2005)CrossRefMATHMathSciNet
23.
go back to reference Struijs, R., Deconinck, H., De Palma, P., Roe, P.L., Powell, K.G.: Progress on Multidimensional Upwind Euler Solvers for Unstructured Grids. AIAA paper 91-1550 (1991) Struijs, R., Deconinck, H., De Palma, P., Roe, P.L., Powell, K.G.: Progress on Multidimensional Upwind Euler Solvers for Unstructured Grids. AIAA paper 91-1550 (1991)
25.
go back to reference Guzik, S.M.J., Groth, C.P.T.: Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods. Int. J. Comput. Fluid Dyn. 22(1–2), 61–83 (2008) Guzik, S.M.J., Groth, C.P.T.: Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods. Int. J. Comput. Fluid Dyn. 22(1–2), 61–83 (2008)
26.
go back to reference Spekreijse, S.P.: Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Math. Comput. 49, 135–155 (1987)CrossRefMATHMathSciNet Spekreijse, S.P.: Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Math. Comput. 49, 135–155 (1987)CrossRefMATHMathSciNet
27.
go back to reference Barth, T.J.: Numerical methods for conservation laws on structured and unstructured meshes. In: VKI LS 2003-05, 33rd Computational Fluid dynamics Course. von Karman Institute for Fluid Dynamics (2003) Barth, T.J.: Numerical methods for conservation laws on structured and unstructured meshes. In: VKI LS 2003-05, 33rd Computational Fluid dynamics Course. von Karman Institute for Fluid Dynamics (2003)
28.
go back to reference Barth, T.J., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004) Barth, T.J., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004)
29.
go back to reference Deconinck, H., Ricchiuto, M.: Residual distribution schemes: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2007). doi:10.1002/0470091355.ecm054 Deconinck, H., Ricchiuto, M.: Residual distribution schemes: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2007). doi:10.​1002/​0470091355.​ecm054
31.
go back to reference Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222, 287–331 (2007)CrossRefMATHMathSciNet Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222, 287–331 (2007)CrossRefMATHMathSciNet
32.
go back to reference Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sb. 47, 271–300 (1959) Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sb. 47, 271–300 (1959)
33.
go back to reference Paillere, H., Deconinck, H.: Compact cell vertex convection schemes on unstructured meshes. In: Deconinck, H., Koren, B. (eds.) Notes on Numerical Fluid Mechanics, pp. 1–50. Vieweg-Verlag, Braunschweig (1997) Paillere, H., Deconinck, H.: Compact cell vertex convection schemes on unstructured meshes. In: Deconinck, H., Koren, B. (eds.) Notes on Numerical Fluid Mechanics, pp. 1–50. Vieweg-Verlag, Braunschweig (1997)
34.
go back to reference Deconinck, H., Sermeus, K., Abgrall, R.: Status of Multidimensional Upwind Residual Distribution Schemes and Applications in Aeronautics. AIAA paper 2000-2328. AIAA CFD Conference, Denver (USA) (2000) Deconinck, H., Sermeus, K., Abgrall, R.: Status of Multidimensional Upwind Residual Distribution Schemes and Applications in Aeronautics. AIAA paper 2000-2328. AIAA CFD Conference, Denver (USA) (2000)
35.
go back to reference Abgrall, R., Mezine, M.: Construction of second-order accurate monotone and stable residual distribution schemes for steady flow problems. J. Comput. Phys. 195, 474–507 (2004)CrossRefMATHMathSciNet Abgrall, R., Mezine, M.: Construction of second-order accurate monotone and stable residual distribution schemes for steady flow problems. J. Comput. Phys. 195, 474–507 (2004)CrossRefMATHMathSciNet
36.
go back to reference Abgrall, R.: Essentially non oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773–808 (2006)CrossRefMATHMathSciNet Abgrall, R.: Essentially non oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773–808 (2006)CrossRefMATHMathSciNet
37.
go back to reference De Palma, P., Pascazio, G., Rossiello, G., Napolitano, M.: A second-order accurate monotone implicit fluctuation splitting scheme for unsteady problems. J. Comput. Phys. 208(1), 1–33 (2005)CrossRefMATH De Palma, P., Pascazio, G., Rossiello, G., Napolitano, M.: A second-order accurate monotone implicit fluctuation splitting scheme for unsteady problems. J. Comput. Phys. 208(1), 1–33 (2005)CrossRefMATH
38.
go back to reference Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228(4), 1071–1115 (2009)CrossRefMATHMathSciNet Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228(4), 1071–1115 (2009)CrossRefMATHMathSciNet
39.
go back to reference Hubbard, M., Ricchiuto, M.: Discontinuous upwind residual distribution: a route to unconditional positivity and high order accuracy. Comput. Fluids 46(1), 263–269 (2011)CrossRefMATHMathSciNet Hubbard, M., Ricchiuto, M.: Discontinuous upwind residual distribution: a route to unconditional positivity and high order accuracy. Comput. Fluids 46(1), 263–269 (2011)CrossRefMATHMathSciNet
40.
go back to reference Sarmany, D., Hubbard, M., Ricchiuto, M., Unconditionally Stable Space-Time Discontinuous Residual Distribution for Shallow-Water Flows. Research Report RR-7958, INRIA, 2012. to appear on J. Phys. Comput. (2012) Sarmany, D., Hubbard, M., Ricchiuto, M., Unconditionally Stable Space-Time Discontinuous Residual Distribution for Shallow-Water Flows. Research Report RR-7958, INRIA, 2012. to appear on J. Phys. Comput. (2012)
41.
go back to reference Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discétization des problèmes d’èvolution paraboliques. R.A.I.R.O. Analyse Numèrique 12, 237–254 (1978) Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discétization des problèmes d’èvolution paraboliques. R.A.I.R.O. Analyse Numèrique 12, 237–254 (1978)
42.
go back to reference Wuilbaut, T., Deconinck, H.: Improving monotonicity of the 2nd order backward difference time integration scheme by temporal limiting. In: Choi, H., Choi, H.G., Yoo, J.Y. (eds.) Computational Fluid Dynamics 2008, pp. 733–738. Springer, Berlin (2009)CrossRef Wuilbaut, T., Deconinck, H.: Improving monotonicity of the 2nd order backward difference time integration scheme by temporal limiting. In: Choi, H., Choi, H.G., Yoo, J.Y. (eds.) Computational Fluid Dynamics 2008, pp. 733–738. Springer, Berlin (2009)CrossRef
43.
go back to reference Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: High order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001)CrossRefMATHMathSciNet Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: High order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001)CrossRefMATHMathSciNet
44.
go back to reference Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computation. Comput. Methods Appl. Mech. Eng. 134(1–2), 71–90 (1996)CrossRefMATH Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computation. Comput. Methods Appl. Mech. Eng. 134(1–2), 71–90 (1996)CrossRefMATH
45.
go back to reference Dobes, J., Deconinck, H.: Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations. J. Comput. Appl. Math 215(1), 378–389 (2006)MathSciNet Dobes, J., Deconinck, H.: Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations. J. Comput. Appl. Math 215(1), 378–389 (2006)MathSciNet
46.
go back to reference Isola, D.: An Interpolation Free Two-Dimensional Conservative ALE Scheme Over Adaptive Unstructured Grids for Rotorcraf Aerodynamics. PhD thesis, Politecnico di Milano, Dipartimento di Ingegneria Aerospaziale (2012) Isola, D.: An Interpolation Free Two-Dimensional Conservative ALE Scheme Over Adaptive Unstructured Grids for Rotorcraf Aerodynamics. PhD thesis, Politecnico di Milano, Dipartimento di Ingegneria Aerospaziale (2012)
Metadata
Title
An ALE Formulation for Explicit Runge–Kutta Residual Distribution
Authors
L. Arpaia
M. Ricchiuto
R. Abgrall
Publication date
01-05-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9910-5

Other articles of this Issue 2/2015

Journal of Scientific Computing 2/2015 Go to the issue

Premium Partner