Skip to main content
Top
Published in:

30-03-2019

An Algorithm for Ordinal Classification Based on Pairwise Comparison

Authors: Yunli Yang, Baiyu Chen, Zhouwang Yang

Published in: Journal of Classification | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper introduces the PairCode algorithm for ordinal classification with small sample sizes, which is based on a pairwise comparison strategy. In addition, this work outlines how to use pairwise comparisons to transform ordinal classifications into disordered regressions and how to transform the results of disordered regressions back to their original ordinal categories. Some effective strategies have been put forward, such as designing a class-label encoding matrix for the pairwise comparison, balancing samples, training classifiers, and predicting new samples. In numerical experiments, our algorithm (PairCode) is compared with the ordinal logistic regressions (LogisticOP) (Hu et al., IEEE Transactions on Knowledge and Data Engineering, 24(11), 2052–2064, 2012; Harrell 2015b), SVMOP (Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28(1), 127–146, 2016; Leathart et al. 2016), SVORIM (Chu and Sathiya Keerthi, Neural Computation, 19(3), 792–815 2007; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28(1), 127–146, 2016), SVOREX (Chu and Sathiya Keerthi, Neural Computation, 19(3), 792–815 2007; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28(1), 127–146, 2016), and ELMOP (Deng et al., Neurocomputing, 74(1), 447–456, 2010; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28(1), 127–146, 2016). The results show that the PairCode algorithm performs better and is relatively stable as reflected by the correct classification rate (CCR), the mean absolute error (MAE), and the maximum MAE value (MMAE). However, the computing speed of the PairCode algorithm for classification is slightly slow and therefore warrants further study to improve the speed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
An Algorithm for Ordinal Classification Based on Pairwise Comparison
Authors
Yunli Yang
Baiyu Chen
Zhouwang Yang
Publication date
30-03-2019
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2020
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-019-9311-4

Premium Partner