Skip to main content
Top

2024 | OriginalPaper | Chapter

An Application of the Simplest Equations Method to Logarithmic Schrödinger Equation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we apply the Simple Equations Method (SEsM) to obtain exact solution of equations which are connected to the nonlinear logarithmic Equation of Schrödinger. The used simple equations are more simple than the solved nonlinear partial differential equation but these simple equations in fact can be quite complicated. We consider the specific case of SEsM for obtaining exact solution of one nonlinear partial differential equation. We use specific case of SEsM which is based on the use of 2 simple equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. G. Drazin: Nonlinear Systems, Cambridge University Press, Cambridge, UK, (1992) P. G. Drazin: Nonlinear Systems, Cambridge University Press, Cambridge, UK, (1992)
4.
go back to reference N. K. Vitanov: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models, Springer, Cham (2016). N. K. Vitanov: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models, Springer, Cham (2016).
16.
go back to reference H. Kantz, T. Schreiber: Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK (2004) H. Kantz, T. Schreiber: Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK (2004)
22.
go back to reference R. Struble: Nonlinear Differential Equations, Dover, New York (2018) R. Struble: Nonlinear Differential Equations, Dover, New York (2018)
23.
24.
go back to reference P. J. Brockwell, R. A. Davis, M. V. Calder: Introduction to Time Series and Forecasting, Springer, New York, (2002) P. J. Brockwell, R. A. Davis, M. V. Calder: Introduction to Time Series and Forecasting, Springer, New York, (2002)
26.
go back to reference A. B. Chambel: Applied chaos theory: A paradigm for complexity, Academic Press, Boston (1993) A. B. Chambel: Applied chaos theory: A paradigm for complexity, Academic Press, Boston (1993)
27.
go back to reference K. T. Ashenfelter, S. M. Boker, J. R Waddell, N. Vitanov: Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation, Journal of Experimental Psychology: Human Perception and Performance, 35, 1072 – 1091 (2009). https://doi.org/10.1037/a0015017 K. T. Ashenfelter, S. M. Boker, J. R Waddell, N. Vitanov: Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation, Journal of Experimental Psychology: Human Perception and Performance, 35, 1072 – 1091 (2009). https://​doi.​org/​10.​1037/​a0015017
37.
go back to reference L. Hammyl, N. Gilbert, Agent-based models in economics. (Wiley, Chichester, UK, 2016). L. Hammyl, N. Gilbert, Agent-based models in economics. (Wiley, Chichester, UK, 2016).
38.
go back to reference I. P. Jordanov: On the nonlinear waves in (2+ 1)-dimensional population systems, Comptes rendus de l’Academie Bulgare des sciences 61, 307–314 (2008) I. P. Jordanov: On the nonlinear waves in (2+ 1)-dimensional population systems, Comptes rendus de l’Academie Bulgare des sciences 61, 307–314 (2008)
39.
go back to reference I. P. Jordanov: Nonlinear waves caused by diffusion of population members, Comptes rendus de l’Academie Bulgare des sciences 62, 33–40 (2009) I. P. Jordanov: Nonlinear waves caused by diffusion of population members, Comptes rendus de l’Academie Bulgare des sciences 62, 33–40 (2009)
40.
go back to reference I. P. Jordanov: Coupled Kink Population Waves, Journal of Theoretical and Applied Mechanics, 40, n.2,93-98 (2010) I. P. Jordanov: Coupled Kink Population Waves, Journal of Theoretical and Applied Mechanics, 40, n.2,93-98 (2010)
42.
go back to reference I. P. Jordanov, Z. I. Dimitrova: On Nonlinear Waves of Migration, Journal of Theoretical and Applied Mechanics, 40, n.1 89–96 (2010) I. P. Jordanov, Z. I. Dimitrova: On Nonlinear Waves of Migration, Journal of Theoretical and Applied Mechanics, 40, n.1 89–96 (2010)
54.
go back to reference N. K. Vitanov: Complicated exact solutions to the 2+ 1-dimensional sine-Gordon equation, ZAMM, 78, S787 - S788 (1998) N. K. Vitanov: Complicated exact solutions to the 2+ 1-dimensional sine-Gordon equation, ZAMM, 78, S787 - S788 (1998)
56.
57.
go back to reference N. K. Vitanov, Z. I. Dimitrova: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://doi.org/10.1016/j.cnsns.2009.11.029 N. K. Vitanov, Z. I. Dimitrova: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://​doi.​org/​10.​1016/​j.​cnsns.​2009.​11.​029
60.
go back to reference N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation, Communications in Nonlinear Science and Numerical Simulation, 16, 3033 – 3044 (2011). https://doi.org/10.1016/j.cnsns.2010.11.013 N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation, Communications in Nonlinear Science and Numerical Simulation, 16, 3033 – 3044 (2011). https://​doi.​org/​10.​1016/​j.​cnsns.​2010.​11.​013
62.
go back to reference N. K. Vitanov: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation, Pliska Stud. Math. Bulgar., 21, 257 – 266 (2012) N. K. Vitanov: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation, Pliska Stud. Math. Bulgar., 21, 257 – 266 (2012)
63.
go back to reference N. K. Vitanov, Z. I. Dimitrova, H. Kantz: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation, Applied Mathematics and Computation, 219, 7480 – 7492 (2013). https://doi.org/10.1016/j.amc.2013.01.035 N. K. Vitanov, Z. I. Dimitrova, H. Kantz: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation, Applied Mathematics and Computation, 219, 7480 – 7492 (2013). https://​doi.​org/​10.​1016/​j.​amc.​2013.​01.​035
65.
67.
go back to reference N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications, Applied Mathematics and Computation, 269, 363 – 378 (2015). https://doi.org/10.1016/j.amc.2015.07.060 N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications, Applied Mathematics and Computation, 269, 363 – 378 (2015). https://​doi.​org/​10.​1016/​j.​amc.​2015.​07.​060
68.
go back to reference N. K. Vitanov: Recent developments of the methodology of Modified Method of Simplest Equation with application, Pliska Studia Mathematica Bulgarica, 30, 29 – 42 (2019) N. K. Vitanov: Recent developments of the methodology of Modified Method of Simplest Equation with application, Pliska Studia Mathematica Bulgarica, 30, 29 – 42 (2019)
69.
go back to reference N. K. Vitanov: Modified method of simplest equation for obtaining exact solutions of nonlinear partial differential equations: History, recent developments of the methodology and studied classes of equations, Journal of Theoretical and Applied Mechanics, 49, 107 – 122 (2019). https://doi.org/10.7546/jtam.49.19.02.02 N. K. Vitanov: Modified method of simplest equation for obtaining exact solutions of nonlinear partial differential equations: History, recent developments of the methodology and studied classes of equations, Journal of Theoretical and Applied Mechanics, 49, 107 – 122 (2019). https://​doi.​org/​10.​7546/​jtam.​49.​19.​02.​02
70.
75.
go back to reference E. V. Nikolova, M. Chilikova-Lyubomirova, N. K. Vitanov: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena, AIP Conference Porceedings, 2321, 030026 (2021). https://doi.org/10.1063/5.0040089 E. V. Nikolova, M. Chilikova-Lyubomirova, N. K. Vitanov: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena, AIP Conference Porceedings, 2321, 030026 (2021). https://​doi.​org/​10.​1063/​5.​0040089
78.
go back to reference N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods, Entropy, 23, 10 (2020). https://doi.org/10.3390/e23010010 N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov: Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods, Entropy, 23, 10 (2020). https://​doi.​org/​10.​3390/​e23010010
79.
go back to reference N. K. Vitanov. Schrödinger Equation and Nonlinear Waves, in Understanding the Schrödinger Equation edited by V. Simpao, H. Little, Nova Science Publishers, New York, pp. 37 - 92 (2020) N. K. Vitanov. Schrödinger Equation and Nonlinear Waves, in Understanding the Schrödinger Equation edited by V. Simpao, H. Little, Nova Science Publishers, New York, pp. 37 - 92 (2020)
Metadata
Title
An Application of the Simplest Equations Method to Logarithmic Schrödinger Equation
Author
Ivan P. Jordanov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_15

Premium Partner