Skip to main content
Top

2021 | OriginalPaper | Chapter

An Approach to Reduce the Number of Conditional Independence Tests in the PC Algorithm

Authors : Marcel Wienöbst, Maciej Liśkiewicz

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The PC algorithm is one of the most prominent constraint-based methods for learning causal structures from observational data. The algorithm relies on conditional independence (CI) tests to infer the structure and its time consumption heavily depends on the number of performed CI tests. We present a modification, called ED-PC, such that – in the oracle model – both ED-PC and the original PC algorithm infer the same structure. However, by using a new idea allowing the detection of a v-structure without explicit knowledge of a separating set, our method reduces the number of needed CI tests significantly. This is made possible by detecting nonadjacencies considerably earlier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For exact definitions of the notions used in the algorithm, see Sect. 2.
 
2
We use iff as shorthand for “if and only if”.
 
Literature
1.
go back to reference Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH
2.
go back to reference Baba, K., Shibata, R., Sibuya, M.: Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46(4), 657–664 (2004)MathSciNetCrossRef Baba, K., Shibata, R., Sibuya, M.: Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46(4), 657–664 (2004)MathSciNetCrossRef
3.
go back to reference Bergsma, W.P.: Testing conditional independence for continuous random variables. Eurandom (2004) Bergsma, W.P.: Testing conditional independence for continuous random variables. Eurandom (2004)
4.
go back to reference Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef
5.
go back to reference Doran, G., Muandet, K., Zhang, K., Schölkopf, B.: A permutation-based kernel conditional independence test. In: UAI, pp. 132–141 (2014) Doran, G., Muandet, K., Zhang, K., Schölkopf, B.: A permutation-based kernel conditional independence test. In: UAI, pp. 132–141 (2014)
6.
go back to reference Harris, N., Drton, M.: PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14(1), 3365–3383 (2013)MathSciNetMATH Harris, N., Drton, M.: PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14(1), 3365–3383 (2013)MathSciNetMATH
7.
go back to reference Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH
8.
go back to reference Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of UAI 1995, pp. 403–410. MK Publishers Inc. (1995) Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of UAI 1995, pp. 403–410. MK Publishers Inc. (1995)
9.
go back to reference Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef
10.
go back to reference Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010) Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010)
11.
go back to reference Sondhi, A., Shojaie, A.: The reduced PC-algorithm: improved causal structure learning in large random networks. J. Mach. Learn. Res. 20(164), 1–31 (2019)MathSciNetMATH Sondhi, A., Shojaie, A.: The reduced PC-algorithm: improved causal structure learning in large random networks. J. Mach. Learn. Res. 20(164), 1–31 (2019)MathSciNetMATH
12.
go back to reference Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)MATH Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)MATH
13.
go back to reference Talvitie, T., Parviainen, P.: Learning Bayesian networks with cops and robbers. In: The 10th International Conference on Probabilistic Graphical Models (2020) Talvitie, T., Parviainen, P.: Learning Bayesian networks with cops and robbers. In: The 10th International Conference on Probabilistic Graphical Models (2020)
14.
go back to reference Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of UAI 1990, pp. 255–270. Elsevier (1990) Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of UAI 1990, pp. 255–270. Elsevier (1990)
15.
go back to reference Wienöbst, M., Liśkiewicz, M.: Recovering causal structures from low-order conditional independencies. In: 34th AAAI Conference on Artificial Intelligence (AAAI), pp. 10302–10309 (2020) Wienöbst, M., Liśkiewicz, M.: Recovering causal structures from low-order conditional independencies. In: 34th AAAI Conference on Artificial Intelligence (AAAI), pp. 10302–10309 (2020)
16.
go back to reference Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017) Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
17.
go back to reference Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 804–813. AUAI Press (2011) Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 804–813. AUAI Press (2011)
Metadata
Title
An Approach to Reduce the Number of Conditional Independence Tests in the PC Algorithm
Authors
Marcel Wienöbst
Maciej Liśkiewicz
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_21

Premium Partner