Skip to main content
Top
Published in: Wireless Networks 6/2018

13-02-2017

An approximate bandwidth allocation algorithm for tradeoff between fairness and throughput in WSN

Authors: Yongbo Cheng, Shiliang Xiao, Jianpo Liu, Feng Guo, Ronghua Qin, Baoqing Li, Xiaobing Yuan

Published in: Wireless Networks | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate the problem of bandwidth allocation in wireless sensor network (WSN) under signal to noise plus interference ratio interference model, which aims at finding a tradeoff between fairness and network throughput. Specifically, we propose an approximate algorithm to solve this problem since it has been proved to be NP-hard. Different from similar algorithms proposed in previous issues, we maximize two utility functions, which are the newly defined bandwidth utility function for fairness and network throughput, by jointly considering sensor nodes association and resource allocation in WSN. In addition, we formulate a new utility function with respect to bandwidth allocation, with the method of weighted sum of two objectives as one objective function, which will find a tradeoff between fairness and throughput. Consequently, the problem is decomposed into two sub-problems and solved in two stages, which are cluster formation stage and scheduling stage. In the first stage, we let sensor nodes join to cluster head nodes, which can determine the association of sensor nodes; in the second stage, the total utility function is maximized by allocating time slots for tradeoff between fairness and throughput. Finally, simulation results demonstrate that our algorithm can achieve better performance than compared algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo, J., Liu, F., Lui, J. C. S., & Jin, H. (2016). Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach. IEEE/ACM Transactions on Networking, 24(2), 873–886.CrossRef Guo, J., Liu, F., Lui, J. C. S., & Jin, H. (2016). Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach. IEEE/ACM Transactions on Networking, 24(2), 873–886.CrossRef
2.
go back to reference Teymoori, P., Sohraby, K., & Kim, K. (2016). A fair and efficient resource allocation scheme for multi-server distributed systems and networks. IEEE Transactions on Mobile Computing, 15(9), 2137–2150.CrossRef Teymoori, P., Sohraby, K., & Kim, K. (2016). A fair and efficient resource allocation scheme for multi-server distributed systems and networks. IEEE Transactions on Mobile Computing, 15(9), 2137–2150.CrossRef
3.
go back to reference Xu, F., Ye, W., Liu, Y., & Zhang, W. (2016). Ufalloc: Towards utility max-min fairness of bandwidth allocation for applications in datacenter networks. Mobile Networks and Applications. doi:10.1007/s11036-016-0739-z. Xu, F., Ye, W., Liu, Y., & Zhang, W. (2016). Ufalloc: Towards utility max-min fairness of bandwidth allocation for applications in datacenter networks. Mobile Networks and Applications. doi:10.​1007/​s11036-016-0739-z.
4.
go back to reference Blough, D. M., Resta, G., & Santi, P. (2014). Interference-aware proportional fairness for multi-rate wireless networks. In INFOCOM, 2014 Proceedings IEEE (pp. 2733–2741). IEEE. Blough, D. M., Resta, G., & Santi, P. (2014). Interference-aware proportional fairness for multi-rate wireless networks. In INFOCOM, 2014 Proceedings IEEE (pp. 2733–2741). IEEE.
5.
go back to reference Li, L., Pal, M., & Yang, Y. R. (2008). Proportional fairness in multi-rate wireless LANs. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. IEEE. Li, L., Pal, M., & Yang, Y. R. (2008). Proportional fairness in multi-rate wireless LANs. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. IEEE.
6.
go back to reference Li, W., Shengliing, W., Yong, C., Xiuzhen, X., Ran, A.-R., Al-Dhelaan, M. A., et al. (2014). Ap association for proportional fairness in multi-rate WLANs. IEEE/ACM Transactions on Networking, 22(1), 191–202.CrossRef Li, W., Shengliing, W., Yong, C., Xiuzhen, X., Ran, A.-R., Al-Dhelaan, M. A., et al. (2014). Ap association for proportional fairness in multi-rate WLANs. IEEE/ACM Transactions on Networking, 22(1), 191–202.CrossRef
7.
go back to reference Shi, H., Prasad, R. V., Onur, E., & Niemegeers, I. (2014). Fairness in wireless networks: Issues, measures and challenges. IEEE Communications Surveys & Tutorials, 16(1), 5–24.CrossRef Shi, H., Prasad, R. V., Onur, E., & Niemegeers, I. (2014). Fairness in wireless networks: Issues, measures and challenges. IEEE Communications Surveys & Tutorials, 16(1), 5–24.CrossRef
8.
go back to reference Jain, R., Chiu, D.-M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation. Jain, R., Chiu, D.-M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation.
9.
go back to reference Kelly, F. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8(1), 33–37.CrossRef Kelly, F. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8(1), 33–37.CrossRef
10.
go back to reference Jinqiang, Y., & Wai-Choong, W. (2014). Utility fairness via association control in wireless mesh networks. In 2014 IEEE international conference on communication systems (ICCS), Conference Proceedings (pp. 533–537). Jinqiang, Y., & Wai-Choong, W. (2014). Utility fairness via association control in wireless mesh networks. In 2014 IEEE international conference on communication systems (ICCS), Conference Proceedings (pp. 533–537).
11.
go back to reference Alayev, Y., Chen, F. F., Hou, Y., Johnson, M. P., Bar-Noy, A., La Porta, T. F., et al. (2014). Throughput maximization in mobile WSN scheduling with power control and rate selection. IEEE Transactions on Wireless Communications, 13(7), 4066–4079.CrossRef Alayev, Y., Chen, F. F., Hou, Y., Johnson, M. P., Bar-Noy, A., La Porta, T. F., et al. (2014). Throughput maximization in mobile WSN scheduling with power control and rate selection. IEEE Transactions on Wireless Communications, 13(7), 4066–4079.CrossRef
12.
go back to reference Liu, J., Nishiyama, H., Kato, N., Ma, J.-F., & Jiang, X. (2014). Throughput-delay tradeoff in mobile ad hoc networks with correlated mobility. INFOCOM, 2014 Proceedings IEEE (pp. 2768–2776). IEEE. Liu, J., Nishiyama, H., Kato, N., Ma, J.-F., & Jiang, X. (2014). Throughput-delay tradeoff in mobile ad hoc networks with correlated mobility. INFOCOM, 2014 Proceedings IEEE (pp. 2768–2776). IEEE.
13.
go back to reference Stai, E., & Papavassiliou, S. (2014). User optimal throughput-delay trade-off in multihop networks under NUM framework. IEEE Communications Letters, 18(11), 1999–2002. Stai, E., & Papavassiliou, S. (2014). User optimal throughput-delay trade-off in multihop networks under NUM framework. IEEE Communications Letters, 18(11), 1999–2002.
14.
go back to reference Mollanoori, M., & Ghaderi, M. (2011). Fair and efficient scheduling in wireless networks with successive interference cancellation. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 221–226). IEEE. Mollanoori, M., & Ghaderi, M. (2011). Fair and efficient scheduling in wireless networks with successive interference cancellation. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 221–226). IEEE.
15.
go back to reference Eryilmaz, A., & Srikant, R. (2006). Joint congestion control, routing, and MAC for stability and fairness in wireless networks. IEEE Journal on Selected Areas in Communications, 24(8), 1514–1524.CrossRef Eryilmaz, A., & Srikant, R. (2006). Joint congestion control, routing, and MAC for stability and fairness in wireless networks. IEEE Journal on Selected Areas in Communications, 24(8), 1514–1524.CrossRef
16.
go back to reference Xiao, S. L., Pei, J., Chen, X. W., & Wang, W. B. (2014). Minimum latency broadcast in the SINR model: A parallel routing and scheduling approach. IEEE Communications Letters, 18(6), 1027–1030.CrossRef Xiao, S. L., Pei, J., Chen, X. W., & Wang, W. B. (2014). Minimum latency broadcast in the SINR model: A parallel routing and scheduling approach. IEEE Communications Letters, 18(6), 1027–1030.CrossRef
17.
go back to reference Lan, T., Kao, D., Chiang, M., & Sabharwal, A. (2010). An axiomatic theory of fairness in network resource allocation. IEEE. Lan, T., Kao, D., Chiang, M., & Sabharwal, A. (2010). An axiomatic theory of fairness in network resource allocation. IEEE.
18.
go back to reference Soldati, P., Johansson, B., & Johansson, M. (2006). Proportionally fair allocation of end-to-end bandwidth in STDMA wireless networks. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing (pp. 286–297). ACM. Soldati, P., Johansson, B., & Johansson, M. (2006). Proportionally fair allocation of end-to-end bandwidth in STDMA wireless networks. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing (pp. 286–297). ACM.
19.
go back to reference Jeon, J.-H., & Lim, J.-T. (2013). Proportional fair scheduling with capacity estimation for wireless multihop networks. Wireless Personal Communications, 68(3), 507–515.CrossRef Jeon, J.-H., & Lim, J.-T. (2013). Proportional fair scheduling with capacity estimation for wireless multihop networks. Wireless Personal Communications, 68(3), 507–515.CrossRef
20.
go back to reference Wang, X., & Cai, L. (2013). Proportional fair scheduling in hierarchical modulation aided wireless networks. IEEE Transactions on Wireless Communications, 12(4), 1584–1593.CrossRef Wang, X., & Cai, L. (2013). Proportional fair scheduling in hierarchical modulation aided wireless networks. IEEE Transactions on Wireless Communications, 12(4), 1584–1593.CrossRef
21.
go back to reference Bu, T., Li, L. E., & Ramjee, R. (2006). Generalized proportional fair scheduling in third generation wireless data networks. INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (pp. 1–12). Bu, T., Li, L. E., & Ramjee, R. (2006). Generalized proportional fair scheduling in third generation wireless data networks. INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (pp. 1–12).
22.
go back to reference Kushner, H. J., & Whiting, P. A. (2004). Convergence of proportional-fair sharing algorithms under general conditions. IEEE Transactions on Wireless Communications, 3(4), 1250–1259.CrossRef Kushner, H. J., & Whiting, P. A. (2004). Convergence of proportional-fair sharing algorithms under general conditions. IEEE Transactions on Wireless Communications, 3(4), 1250–1259.CrossRef
23.
go back to reference Davaslioglu, E., & Ayanoglu, K. (2014). Efficiency and fairness trade-offs in SC-FDMA schedulers. IEEE Transactions on Wireless Communications, 13(6), 2991–3002.CrossRef Davaslioglu, E., & Ayanoglu, K. (2014). Efficiency and fairness trade-offs in SC-FDMA schedulers. IEEE Transactions on Wireless Communications, 13(6), 2991–3002.CrossRef
24.
go back to reference Wong, I. C., Shen, Z., Evans, B. L., & Andrews, J. G. (2004). A low complexity algorithm for proportional resource allocation in OFDMA systems. In IEEE Workshop on signal processing systems, 2004. SIPS 2004 (pp. 1–6). IEEE. Wong, I. C., Shen, Z., Evans, B. L., & Andrews, J. G. (2004). A low complexity algorithm for proportional resource allocation in OFDMA systems. In IEEE Workshop on signal processing systems, 2004. SIPS 2004 (pp. 1–6). IEEE.
25.
go back to reference Cheng, Y. B., You, X., Fu, P. C., & Wang, Z. M. (2016). An energy efficient algorithm based on clustering formulation and scheduling for proportional fairness in wireless sensor networks. KSII Transactions on Internet and Information Systems, 10(2), 559–573. Cheng, Y. B., You, X., Fu, P. C., & Wang, Z. M. (2016). An energy efficient algorithm based on clustering formulation and scheduling for proportional fairness in wireless sensor networks. KSII Transactions on Internet and Information Systems, 10(2), 559–573.
26.
go back to reference Huang, J., & Bi, J. (2015). A proportional fairness scheduling for wireless sensor networks. In 2015 international conference on identification, information, and knowledge in the internet of things (IIKI), conference proceedings (pp. 266–271). Huang, J., & Bi, J. (2015). A proportional fairness scheduling for wireless sensor networks. In 2015 international conference on identification, information, and knowledge in the internet of things (IIKI), conference proceedings (pp. 266–271).
27.
go back to reference Ruoyu, S., Mingyi, H., & Zhi-Quan, L. (2015). Joint downlink base station association and power control for max-min fairness: Computation and complexity. IEEE Journal on Selected Areas in Communications, 33(6), 1040–1054.CrossRef Ruoyu, S., Mingyi, H., & Zhi-Quan, L. (2015). Joint downlink base station association and power control for max-min fairness: Computation and complexity. IEEE Journal on Selected Areas in Communications, 33(6), 1040–1054.CrossRef
28.
go back to reference Tan, G., & Guttag, J. V. (2004). Time-based fairness improves performance in multi-rate WLANs. In USENIX annual technical conference, general track (pp. 269–282). Tan, G., & Guttag, J. V. (2004). Time-based fairness improves performance in multi-rate WLANs. In USENIX annual technical conference, general track (pp. 269–282).
29.
go back to reference Babu, A., & Jacob, L. (2005). Performance analysis of IEEE 802.11 multirate WLANs: Time based fairness vs throughput based fairness. In 2005 international conference on wireless networks, communications and mobile computing (Vol. 1 , pp. 203–208). IEEE. Babu, A., & Jacob, L. (2005). Performance analysis of IEEE 802.11 multirate WLANs: Time based fairness vs throughput based fairness. In 2005 international conference on wireless networks, communications and mobile computing (Vol. 1 , pp. 203–208). IEEE.
30.
go back to reference Yen, L.-H., Li, J.-J., & Lin, C.-M. (2011). Stability and fairness of AP selection games in IEEE 802.11 access networks. IEEE Transactions on Vehicular Technology, 60(3), 1150–1160.CrossRef Yen, L.-H., Li, J.-J., & Lin, C.-M. (2011). Stability and fairness of AP selection games in IEEE 802.11 access networks. IEEE Transactions on Vehicular Technology, 60(3), 1150–1160.CrossRef
Metadata
Title
An approximate bandwidth allocation algorithm for tradeoff between fairness and throughput in WSN
Authors
Yongbo Cheng
Shiliang Xiao
Jianpo Liu
Feng Guo
Ronghua Qin
Baoqing Li
Xiaobing Yuan
Publication date
13-02-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1458-5

Other articles of this Issue 6/2018

Wireless Networks 6/2018 Go to the issue