Skip to main content
Top

2017 | OriginalPaper | Chapter

An Architecture of Calcium Signaling for Molecular Communication Based Nano Network

Authors : Amitava Mukherjee, Sushovan Das, Soumallya Chatterjee

Published in: Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Nobel laureate physicist Richard Feynman, in his famous speech in 1959 entitled “There’s Plenty of Room at the Bottom”, has pointed out the concepts in nanotechnology and described how the manipulation of individual atoms and molecules would give rise to more functional and powerful man-made devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akyildiz IF, Jornet JM, Pierobon M (2011) Nanonetworks: a new frontier in communications. CACM, 54(11):84–87 Akyildiz IF, Jornet JM, Pierobon M (2011) Nanonetworks: a new frontier in communications. CACM, 54(11):84–87
2.
go back to reference Akyildiz Ian F, Brunetti F, Blázquez C (2008) “Nanonetworks: A new communication paradigm”. Comput Netw 52:2260–2279CrossRef Akyildiz Ian F, Brunetti F, Blázquez C (2008) “Nanonetworks: A new communication paradigm”. Comput Netw 52:2260–2279CrossRef
3.
go back to reference Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobioscience 8(2):169–180CrossRef Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobioscience 8(2):169–180CrossRef
4.
go back to reference Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21 Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21
5.
go back to reference Guney A, Atakan B, Akan OB (2012) Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans Mob Comput 11(3) Guney A, Atakan B, Akan OB (2012) Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans Mob Comput 11(3)
6.
go back to reference Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189CrossRef Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189CrossRef
7.
go back to reference Berridge MJ (1997) The AM and FM of calcium signaling. Nature 386:756–780 Berridge MJ (1997) The AM and FM of calcium signaling. Nature 386:756–780
8.
go back to reference Parcerisa Ll (2009) Molecular communication options for long range nanonetworks. Master’s Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology Parcerisa Ll (2009) Molecular communication options for long range nanonetworks. Master’s Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology
9.
go back to reference Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221CrossRef Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221CrossRef
10.
go back to reference Akyildiz IF, Jornet JM (2010) Electromagnetic wirewless nanosensor networks. Nano Commun Netw 1:3–19 Akyildiz IF, Jornet JM (2010) Electromagnetic wirewless nanosensor networks. Nano Commun Netw 1:3–19
12.
go back to reference Chakraborty D (2013) Modeling the architecture of calcium signaling from the perspective of nanonetworks. Calcutta University, M. Tech. Thesis Chakraborty D (2013) Modeling the architecture of calcium signaling from the perspective of nanonetworks. Calcutta University, M. Tech. Thesis
13.
go back to reference Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Modeling the architecture of calcium signaling from the perspective of nanonetworks. ICC MONACOM. (accepted) Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Modeling the architecture of calcium signaling from the perspective of nanonetworks. ICC MONACOM. (accepted)
14.
go back to reference Chakraborty D, Mukherjee A, Sadhu S, Chakraborty A, Das S, Chatterjee S, Naskar MK (2014) Physical channel study for calcium signaling based communication in nanonetworks. In: Globecom 2014—symposium on selected areas in communications: GC14 SAC nanotechnology (submitted) Chakraborty D, Mukherjee A, Sadhu S, Chakraborty A, Das S, Chatterjee S, Naskar MK (2014) Physical channel study for calcium signaling based communication in nanonetworks. In: Globecom 2014—symposium on selected areas in communications: GC14 SAC nanotechnology (submitted)
15.
go back to reference Wei G, Bogdan P, Marculescu R (2013) Efficient modeling and simulation of bacteria-based nanonetworks with BNSim. IEEE J Sel Areas Commun 31(12):868–878 Wei G, Bogdan P, Marculescu R (2013) Efficient modeling and simulation of bacteria-based nanonetworks with BNSim. IEEE J Sel Areas Commun 31(12):868–878
16.
go back to reference Wei G, Bogdan, P, Marculescu R (2013) Bumpy rides: modeling the dynamics of chemotactic interacting bacteria. IEEE J Sel Areas Commun 31(12):879–890 Wei G, Bogdan, P, Marculescu R (2013) Bumpy rides: modeling the dynamics of chemotactic interacting bacteria. IEEE J Sel Areas Commun 31(12):879–890
17.
go back to reference Srinivas KV, Eckford AW, Adve RS (2012) Molecular communication in fluid media: the additive inverse gaussian noise channel. IEEE Trans Inf Theory 58(7):4678–4692MathSciNetCrossRef Srinivas KV, Eckford AW, Adve RS (2012) Molecular communication in fluid media: the additive inverse gaussian noise channel. IEEE Trans Inf Theory 58(7):4678–4692MathSciNetCrossRef
18.
go back to reference Clapham DE (2007) Calcium signaling, cell 131:1047–1058 Clapham DE (2007) Calcium signaling, cell 131:1047–1058
19.
go back to reference Bush F (Unpublished) Nanoscale communication network definition & framework. IEEE group P1906.1 Bush F (Unpublished) Nanoscale communication network definition & framework. IEEE group P1906.1
20.
go back to reference Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol I:11–21CrossRef Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol I:11–21CrossRef
21.
go back to reference Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P (2006) Voltage-gated calcium channel in genetic diseases. Biochem et Biophys Acta 1763:1169–1174CrossRef Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P (2006) Voltage-gated calcium channel in genetic diseases. Biochem et Biophys Acta 1763:1169–1174CrossRef
22.
go back to reference Vay L, SanMiguel EH, Santo-Domingo J, Lobaton D, Moreno A, Montero M, Alvarez J (2007) Modulation of Ca2+ release in HeLa cells and fibroblasts by mitochondrial Ca2+ uniporter stimulation. J Physiol 580(1):39–49CrossRef Vay L, SanMiguel EH, Santo-Domingo J, Lobaton D, Moreno A, Montero M, Alvarez J (2007) Modulation of Ca2+ release in HeLa cells and fibroblasts by mitochondrial Ca2+ uniporter stimulation. J Physiol 580(1):39–49CrossRef
23.
go back to reference Mori Y, Peskin CS (2009) A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes. Commun Appl Math Comput Sci 4(1):85–134MathSciNetCrossRefMATH Mori Y, Peskin CS (2009) A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes. Commun Appl Math Comput Sci 4(1):85–134MathSciNetCrossRefMATH
24.
go back to reference Moore M, Enomoto A, Nakano T, Suda T, Kayasuga A, Kojima H, Sakakibara H, Oiwa K (2006) Simulation of a molecular motor based communication network Moore M, Enomoto A, Nakano T, Suda T, Kayasuga A, Kojima H, Sakakibara H, Oiwa K (2006) Simulation of a molecular motor based communication network
25.
go back to reference Totha Á, Bánky D, Grolmusz V (2011) 3D Brownian motion simulator for high sensitivity nano-biotechnical applications. IEEE Trans Nano Biosci Totha Á, Bánky D, Grolmusz V (2011) 3D Brownian motion simulator for high sensitivity nano-biotechnical applications. IEEE Trans Nano Biosci
26.
go back to reference Llatser I, Pascual I, Garralda N, Cabellos-Aparicio A, Alarcon E (2011) N3 Sim: a simulation framework for diffusion-based molecular communication. IEEE Trans Nano Biosci Llatser I, Pascual I, Garralda N, Cabellos-Aparicio A, Alarcon E (2011) N3 Sim: a simulation framework for diffusion-based molecular communication. IEEE Trans Nano Biosci
27.
go back to reference Felicetti L, Femminella M, Reali G (2012) A simulation tool for nanoscale biological networks. J Nano Commun Netw 3:2–18. (Elsevier) Felicetti L, Femminella M, Reali G (2012) A simulation tool for nanoscale biological networks. J Nano Commun Netw 3:2–18. (Elsevier)
28.
go back to reference Gul E, Atakan B, Akan OB (2010) NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun Netw I:138–156 Gul E, Atakan B, Akan OB (2010) NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun Netw I:138–156
29.
go back to reference Garralda N, Llatser I, Cabellos-Aparicio A, Pierobony M (2011) Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In: Proceedings of INFOCOM Garralda N, Llatser I, Cabellos-Aparicio A, Pierobony M (2011) Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In: Proceedings of INFOCOM
30.
go back to reference Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Modeling the physical channel in the architecture of nanonetworks using molecular communication with Ca2+ signaling. IEEE Trans NanoBioscience. ((submitted), August 2013) Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Modeling the physical channel in the architecture of nanonetworks using molecular communication with Ca2+ signaling. IEEE Trans NanoBioscience. ((submitted), August 2013)
31.
go back to reference Jornet JM, Pujol JC, Pareta JS (2012) PHLAME: a physical layer aware MAC protocol for electromagnetic nanonetworks in the terahertz band. Nano Commun Netw 3:74–81CrossRef Jornet JM, Pujol JC, Pareta JS (2012) PHLAME: a physical layer aware MAC protocol for electromagnetic nanonetworks in the terahertz band. Nano Commun Netw 3:74–81CrossRef
32.
go back to reference Nakano T, Suda T, Moore M, Egashira R, Enomoto A, Arima K (2005) Molecular communication for nanomachines using intercellular calcium signaling. In: Proceedings of 2005 5th IEEE Conference on Nanotechnology, July 2005 Nakano T, Suda T, Moore M, Egashira R, Enomoto A, Arima K (2005) Molecular communication for nanomachines using intercellular calcium signaling. In: Proceedings of 2005 5th IEEE Conference on Nanotechnology, July 2005
33.
go back to reference Clapham DE (2007) Calcium signaling. Cell 131, 1047–1058 Clapham DE (2007) Calcium signaling. Cell 131, 1047–1058
34.
go back to reference Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Physical channel study for calcium signaling based communication in nanonetworks. IEEE, ICC’14. ((submitted), November, 2013) Chakraborty D, Mukherjee A, Sadhu S, Ray SS, Das S, Chatterjee S, Naskar MK (2013) Physical channel study for calcium signaling based communication in nanonetworks. IEEE, ICC’14. ((submitted), November, 2013)
35.
go back to reference Leeson MS, Higgins MD (2012) Error correction coding for molecular communications. In: International workshop on molecular and nanoscale communications Leeson MS, Higgins MD (2012) Error correction coding for molecular communications. In: International workshop on molecular and nanoscale communications
36.
go back to reference Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobiosci 8(2):169–180CrossRef Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobiosci 8(2):169–180CrossRef
37.
go back to reference Leeson MS (2000) Performance analysis of direct detection spectrally sliced receivers using fabry-perot filters. J Lightwave Technol 18(1):13–25CrossRef Leeson MS (2000) Performance analysis of direct detection spectrally sliced receivers using fabry-perot filters. J Lightwave Technol 18(1):13–25CrossRef
38.
go back to reference Kuran MS, Birkan Yilmaz H, Tugcu T, Özerman B (2010) Energy model for communication via diffusion in nano networks. Nano Commun Netw 1(2):86–95CrossRef Kuran MS, Birkan Yilmaz H, Tugcu T, Özerman B (2010) Energy model for communication via diffusion in nano networks. Nano Commun Netw 1(2):86–95CrossRef
39.
go back to reference Costello DJ, Jr Hagenauer J, Imai JH, Wicker SB (1998) Applications of error-control coding. IEEE Trans Inf Theory 44(6):2531–2560 Costello DJ, Jr Hagenauer J, Imai JH, Wicker SB (1998) Applications of error-control coding. IEEE Trans Inf Theory 44(6):2531–2560
40.
go back to reference Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRef Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRef
41.
go back to reference Moon TK (2005) Error correction coding: mathematical methods and algorithms. Wiley, New York, NY. (Chapter 14) Moon TK (2005) Error correction coding: mathematical methods and algorithms. Wiley, New York, NY. (Chapter 14)
43.
go back to reference Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2007) Molecular communication through gap junction channels: system design, experiments and modeling. In: Bionetics’07. Budapest, Hungary. (December 10–13, 2007) Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2007) Molecular communication through gap junction channels: system design, experiments and modeling. In: Bionetics’07. Budapest, Hungary. (December 10–13, 2007)
44.
go back to reference Akyildiz IF, Jornet JM (2010) Graphene-based nano-antennas for electromagnetic nanocommunicationsin the terahertz band. In: Proceedings of 4th european conference on antennas and propagation, EUCAP, pp. 1–5. (April 2010) Akyildiz IF, Jornet JM (2010) Graphene-based nano-antennas for electromagnetic nanocommunicationsin the terahertz band. In: Proceedings of 4th european conference on antennas and propagation, EUCAP, pp. 1–5. (April 2010)
45.
go back to reference Rosenau da Costa M, Kibis OV, Portnoi ME (2009) Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectron J 40(4–5):776–778CrossRef Rosenau da Costa M, Kibis OV, Portnoi ME (2009) Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectron J 40(4–5):776–778CrossRef
46.
go back to reference Zhou G, Yang M, Xiao X, Li Y (2003) Electronic transport in a quantum wire under external terahertz electromagnetic irradiation. Phys Rev B 68(15):155309CrossRef Zhou G, Yang M, Xiao X, Li Y (2003) Electronic transport in a quantum wire under external terahertz electromagnetic irradiation. Phys Rev B 68(15):155309CrossRef
47.
go back to reference Woolard D, Zhao P, Rutherglen C, Yu Z, Burke P, Brueck S, Stintz A (2008) Nanoscale imaging technology for terahertz-frequency transmission microscopy. Int J High Speed Electron Syst 18(1):205–222CrossRef Woolard D, Zhao P, Rutherglen C, Yu Z, Burke P, Brueck S, Stintz A (2008) Nanoscale imaging technology for terahertz-frequency transmission microscopy. Int J High Speed Electron Syst 18(1):205–222CrossRef
48.
go back to reference Akyildiz IF, Jornet JM (2010) The Internet of Nano-Things. IEEE Wirel Commun Mag 17(6):58–63CrossRef Akyildiz IF, Jornet JM (2010) The Internet of Nano-Things. IEEE Wirel Commun Mag 17(6):58–63CrossRef
49.
go back to reference Jornet JM, Akyildiz IF (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: Proceedings of IEEE international conference on communications, ICC, pp. 1–6. (May 2010) Jornet JM, Akyildiz IF (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: Proceedings of IEEE international conference on communications, ICC, pp. 1–6. (May 2010)
50.
go back to reference Garrald N, Llatser I, Cabellos-Aparicio A, Pierobony M (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: Proceedings of IEEE INFOCOM 2011 Garrald N, Llatser I, Cabellos-Aparicio A, Pierobony M (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: Proceedings of IEEE INFOCOM 2011
51.
go back to reference Dressler F, Kargl F (2012) Towards security in nano-communication: challenges and opportunities. Nano Commun Netw 3(3):151–160CrossRef Dressler F, Kargl F (2012) Towards security in nano-communication: challenges and opportunities. Nano Commun Netw 3(3):151–160CrossRef
52.
go back to reference Fall K (2009) The ns manual (formerly ns Notes and Documentation), in: The VINT Project. (January 2009) Fall K (2009) The ns manual (formerly ns Notes and Documentation), in: The VINT Project. (January 2009)
58.
go back to reference Gaurav G, Shivendra T, Pardasani KR (2009) Calora: a software to simulate calcium diffusion. J Comput Inf Sci 2(2):20–30 Gaurav G, Shivendra T, Pardasani KR (2009) Calora: a software to simulate calcium diffusion. J Comput Inf Sci 2(2):20–30
59.
go back to reference Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21 Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21
Metadata
Title
An Architecture of Calcium Signaling for Molecular Communication Based Nano Network
Authors
Amitava Mukherjee
Sushovan Das
Soumallya Chatterjee
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50688-3_8