Skip to main content
Top
Published in:

20-09-2022

An Atlas for the Pinhole Camera

Authors: Sameer Agarwal, Timothy Duff, Max Lieblich, Rekha R. Thomas

Published in: Foundations of Computational Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce an atlas of algebro-geometric objects associated with image formation in pinhole cameras. The nodes of the atlas are algebraic varieties or their vanishing ideals related to each other by projection or elimination and restriction or specialization, respectively. This atlas offers a unifying framework for the study of problems in 3D computer vision. We initiate the study of the atlas by completely characterizing a part of the atlas stemming from the triangulation problem. We conclude with several open problems and generalizations of the atlas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
To distinguish between known and unknown quantities, we use a bar over an object to indicate specialization. For instance, A stands for a symbolic \(3 \times 4\) matrix denoting a camera, while \({\bar{A}}\) is a \(3 \times 4\) scalar matrix realizing a camera. We also use bold face letters to indicate collections. For instance, we use \(\mathbf {A}\) and \({\bar{\mathbf {A}}}\) to specify a collection of symbolic and scalar cameras, respectively.
 
2
The imaging map of (1.3) models a scenario in which all points are visible in every image. One may consider other scenarios of interest in computer vision, e.g., when each point is visible in only some of the images (e.g., [19, 29]).
 
3
We note that the definition of \(\Gamma _{\mathbf {A}, \mathbf {q}, \mathbf {p}}^{m,n}\) is independent of the choice of U. As such, it is insensitive to certain physical assumptions about the camera matrices (e.g.,  that they have full rank, or that their centers do not coincide.) In particular, although a generic point \(({\bar{\mathbf {A}}}, {\bar{\mathbf {q}}}, {\bar{\mathbf {p}}}) \in \Gamma _{\mathbf {A}, \mathbf {q}, \mathbf {p}}^{m,n}\) will be such that each \(A_i\) has full rank and all \(A_i q_j \) are defined, these conditions do not hold for an arbitrary point \(({\bar{\mathbf {A}}}, {\bar{\mathbf {q}}}, {\bar{\mathbf {p}}}) \in \Gamma _{\mathbf {A}, \mathbf {q}, \mathbf {p}}^{m,n}.\)
 
4
Not every result of successively applying projection and specialization operations to \(\Gamma _{\mathbf {A}, \mathbf {q}, \mathbf {p}}^{m,n}\) is included here. For example \(\Gamma ^{m,n}_{\mathbf {A}}\) and \(\Gamma ^{m,n}_{\mathbf {q}}\) are trivial. Similarly \(\Gamma ^{m,n}_{{\bar{\mathbf {A}}},\mathbf {q},{\bar{\mathbf {p}}}}\) and \(\Gamma ^{m,n}_{\mathbf {A},{\bar{\mathbf {q}}},{\bar{\mathbf {p}}}}\) are defined by linear equations and not interesting for projective cameras. However, this can change as the model for the camera is varied. For example, \(\Gamma ^{m,n}_{\mathbf {A},{\bar{\mathbf {q}}},{\bar{\mathbf {p}}}}\) is an interesting nonlinear variety for Euclidean cameras. See Sect. 8 for more.
 
Literature
1.
go back to reference Sameer Agarwal, Hon-leung Lee, Bernd Sturmfels, and Rekha R. Thomas, On the existence of epipolar matrices, International Journal of Computer Vision 121 (2017), no. 3, 403–415.MathSciNetCrossRef Sameer Agarwal, Hon-leung Lee, Bernd Sturmfels, and Rekha R. Thomas, On the existence of epipolar matrices, International Journal of Computer Vision 121 (2017), no. 3, 403–415.MathSciNetCrossRef
2.
go back to reference Sameer Agarwal, Andrew Pryhuber, and Rekha R. Thomas, Ideals of the Multiview Variety, IEEE Transactions on Pattern Analysis & Machine Intelligence 43 (2021), no. 04, 1279–1292.CrossRef Sameer Agarwal, Andrew Pryhuber, and Rekha R. Thomas, Ideals of the Multiview Variety, IEEE Transactions on Pattern Analysis & Machine Intelligence 43 (2021), no. 04, 1279–1292.CrossRef
3.
go back to reference Chris Aholt, Sameer Agarwal, and Rekha Thomas, A QCQP approach to triangulation, European Conference on Computer Vision, Springer-Verlag, 2012, p. 654–667. Chris Aholt, Sameer Agarwal, and Rekha Thomas, A QCQP approach to triangulation, European Conference on Computer Vision, Springer-Verlag, 2012, p. 654–667.
4.
go back to reference Chris Aholt and Luke Oeding, The ideal of the trifocal variety, Mathematics of Computation 83 (2014), no. 289, 2553–2574.MathSciNetCrossRef Chris Aholt and Luke Oeding, The ideal of the trifocal variety, Mathematics of Computation 83 (2014), no. 289, 2553–2574.MathSciNetCrossRef
5.
go back to reference Chris Aholt, Bernd Sturmfels, and Rekha Thomas, A Hilbert scheme in computer vision, Canadian Journal of Mathematics 65 (2013), no. 5, 961–988.MathSciNetCrossRef Chris Aholt, Bernd Sturmfels, and Rekha Thomas, A Hilbert scheme in computer vision, Canadian Journal of Mathematics 65 (2013), no. 5, 961–988.MathSciNetCrossRef
6.
go back to reference Michael F. Atiyah and Ian G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Michael F. Atiyah and Ian G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
7.
go back to reference Adrien Bartoli and Peter Sturm, Structure-from-motion using lines: Representation, triangulation, and bundle adjustment, Computer Vision and Image Understanding 100 (2005), no. 3, 416–441.CrossRef Adrien Bartoli and Peter Sturm, Structure-from-motion using lines: Representation, triangulation, and bundle adjustment, Computer Vision and Image Understanding 100 (2005), no. 3, 416–441.CrossRef
8.
go back to reference David Bernstein and Andrei Zelevinsky, Combinatorics of maximal minors, Journal of Algebraic Combinatorics 2 (1993), no. 2, 111–121.MathSciNetCrossRef David Bernstein and Andrei Zelevinsky, Combinatorics of maximal minors, Journal of Algebraic Combinatorics 2 (1993), no. 2, 111–121.MathSciNetCrossRef
9.
go back to reference Adam Boocher, Free resolutions and sparse determinantal ideals, Mathematical Research Letters 19 (2012), no. 4, 805–821.MathSciNetCrossRef Adam Boocher, Free resolutions and sparse determinantal ideals, Mathematical Research Letters 19 (2012), no. 4, 805–821.MathSciNetCrossRef
10.
go back to reference Paul Breiding, Felix Rydell, Elima Shehu, and Angélica Torres, Line multiview varieties, 2022. Paul Breiding, Felix Rydell, Elima Shehu, and Angélica Torres, Line multiview varieties, 2022.
11.
go back to reference Stefan Carlsson and Daphna Weinshall, Dual computation of projective shape and camera positions from multiple images, International Journal of Computer Vision 27 (1998), no. 3, 227–241.CrossRef Stefan Carlsson and Daphna Weinshall, Dual computation of projective shape and camera positions from multiple images, International Journal of Computer Vision 27 (1998), no. 3, 227–241.CrossRef
12.
go back to reference Dustin Cartwright and Bernd Sturmfels, The Hilbert scheme of the diagonal in a product of projective spaces, International Mathematics Research Notices 2010 (2010), no. 9, 1741–1771.MathSciNet Dustin Cartwright and Bernd Sturmfels, The Hilbert scheme of the diagonal in a product of projective spaces, International Mathematics Research Notices 2010 (2010), no. 9, 1741–1771.MathSciNet
13.
go back to reference Aldo Conca, Emanuela De Negri, and Elisa Gorla, Universal Gröbner bases for maximal minors, International Mathematics Research Notices 2015 (2015), no. 11, 3245–3262. Aldo Conca, Emanuela De Negri, and Elisa Gorla, Universal Gröbner bases for maximal minors, International Mathematics Research Notices 2015 (2015), no. 11, 3245–3262.
14.
go back to reference David A. Cox, The moving curve ideal and the Rees algebra, Theoretical Computer Science 392 (2008), no. 1-3, 23–36. David A. Cox, The moving curve ideal and the Rees algebra, Theoretical Computer Science 392 (2008), no. 1-3, 23–36.
15.
go back to reference David A. Cox, John Little, and Donal O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4 ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015. David A. Cox, John Little, and Donal O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4 ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015.
16.
go back to reference Song De Ma, Conics-based stereo, motion estimation, and pose determination, International Journal of Computer Vision 10 (1993), no. 1, 7–25.CrossRef Song De Ma, Conics-based stereo, motion estimation, and pose determination, International Journal of Computer Vision 10 (1993), no. 1, 7–25.CrossRef
17.
go back to reference Michel Demazure, Sur deux problemes de reconstruction, Tech. Report RR-0882, INRIA, July 1988. Michel Demazure, Sur deux problemes de reconstruction, Tech. Report RR-0882, INRIA, July 1988.
18.
go back to reference Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R Thomas, The Euclidean distance degree of an algebraic variety, Foundations of Computational Mathematics 16 (2016), no. 1, 99–149.MathSciNetCrossRef Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R Thomas, The Euclidean distance degree of an algebraic variety, Foundations of Computational Mathematics 16 (2016), no. 1, 99–149.MathSciNetCrossRef
19.
go back to reference Timothy Duff, Kathlén Kohn, Anton Leykin, and Tomas Pajdla, PL\(_1\)P-Point-Line minimal problems under partial visibility in three views, European Conference on Computer Vision, Springer, 2020, pp. 175–192. Timothy Duff, Kathlén Kohn, Anton Leykin, and Tomas Pajdla, PL\(_1\)P-Point-Line minimal problems under partial visibility in three views, European Conference on Computer Vision, Springer, 2020, pp. 175–192.
20.
go back to reference Olivier D. Faugeras and Bernard Mourrain, On the Geometry and Algebra of the Point and Line Correspondences Between N Images, IEEE International Conference on Computer Vision, 1995, pp. 951–956. Olivier D. Faugeras and Bernard Mourrain, On the Geometry and Algebra of the Point and Line Correspondences Between N Images, IEEE International Conference on Computer Vision, 1995, pp. 951–956.
21.
go back to reference M. Giusti and M. Merle, Singularités isolées et sections planes de variétés déterminantielles. II. Sections de variétés déterminantielles par les plans de coordonnées, Lecture Notes in Math., vol. 961, pp. 103–118, Springer, Berlin, 1982. M. Giusti and M. Merle, Singularités isolées et sections planes de variétés déterminantielles. II. Sections de variétés déterminantielles par les plans de coordonnées, Lecture Notes in Math., vol. 961, pp. 103–118, Springer, Berlin, 1982.
23.
go back to reference Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004.CrossRef Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004.CrossRef
24.
go back to reference Richard I Hartley, An investigation of the essential matrix, Tech. report, General Electric CRD, 1995. Richard I Hartley, An investigation of the essential matrix, Tech. report, General Electric CRD, 1995.
25.
go back to reference Richard I Hartley, Lines and points in three views and the trifocal tensor, International Journal of Computer Vision 22 (1997), no. 2, 125–140.CrossRef Richard I Hartley, Lines and points in three views and the trifocal tensor, International Journal of Computer Vision 22 (1997), no. 2, 125–140.CrossRef
26.
go back to reference Richard I Hartley and Peter Sturm, Triangulation, Computer Vision and Image Understanding 68 (1997), no. 2, 146–157.CrossRef Richard I Hartley and Peter Sturm, Triangulation, Computer Vision and Image Understanding 68 (1997), no. 2, 146–157.CrossRef
27.
go back to reference Anders Heyden and Kalle Åström, Algebraic properties of multilinear constraints, Mathematical Methods in the Applied Sciences 20 (1997), no. 13, 1135–1162.ADSMathSciNetCrossRef Anders Heyden and Kalle Åström, Algebraic properties of multilinear constraints, Mathematical Methods in the Applied Sciences 20 (1997), no. 13, 1135–1162.ADSMathSciNetCrossRef
28.
go back to reference Fredrik Kahl and Anders Heyden, Affine structure and motion from points, lines and conics, International Journal of Computer Vision 33 (1999), no. 3, 163–180.CrossRef Fredrik Kahl and Anders Heyden, Affine structure and motion from points, lines and conics, International Journal of Computer Vision 33 (1999), no. 3, 163–180.CrossRef
29.
go back to reference Joe Kileel, Minimal problems for the calibrated trifocal variety, SIAM Journal on Applied Algebra and Geometry 1 (2017), no. 1, 575–598.MathSciNetCrossRef Joe Kileel, Minimal problems for the calibrated trifocal variety, SIAM Journal on Applied Algebra and Geometry 1 (2017), no. 1, 575–598.MathSciNetCrossRef
30.
go back to reference Laurent Kneip, Roland Siegwart, and Marc Pollefeys, Finding the exact rotation between two images independently of the translation, European Conference on Computer Vision, vol. 7577, Springer, 2012, pp. 696–709. Laurent Kneip, Roland Siegwart, and Marc Pollefeys, Finding the exact rotation between two images independently of the translation, European Conference on Computer Vision, vol. 7577, Springer, 2012, pp. 696–709.
31.
go back to reference Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla, Polynomial eigenvalue solutions to minimal problems in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2011), no. 7, 1381–1393.CrossRefPubMed Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla, Polynomial eigenvalue solutions to minimal problems in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2011), no. 7, 1381–1393.CrossRefPubMed
32.
go back to reference Viktor Larsson, Kalle Astrom, and Magnus Oskarsson, Efficient solvers for minimal problems by syzygy-based reduction, IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 820–829. Viktor Larsson, Kalle Astrom, and Magnus Oskarsson, Efficient solvers for minimal problems by syzygy-based reduction, IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 820–829.
33.
go back to reference Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua, EPnP: An accurate\({O}(n)\)solution to the PNP problem, International Journal of Computer Vision 81 (2009), no. 2, 155–166.CrossRef Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua, EPnP: An accurate\({O}(n)\)solution to the PNP problem, International Journal of Computer Vision 81 (2009), no. 2, 155–166.CrossRef
34.
go back to reference Max Lieblich and Lucas Van Meter, Two Hilbert schemes in computer vision, SIAM Journal on Applied Algebra and Geometry 4 (2020), no. 2, 297–321.MathSciNetCrossRef Max Lieblich and Lucas Van Meter, Two Hilbert schemes in computer vision, SIAM Journal on Applied Algebra and Geometry 4 (2020), no. 2, 297–321.MathSciNetCrossRef
35.
go back to reference Peter Lindstrom, Triangulation made easy, 2010 IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1554–1561. Peter Lindstrom, Triangulation made easy, 2010 IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1554–1561.
36.
go back to reference H Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature 293 (1981), no. 5828, 133–135.ADSCrossRef H Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature 293 (1981), no. 5828, 133–135.ADSCrossRef
37.
go back to reference Quan-Tuan Luong and Olivier D Faugeras, The fundamental matrix: Theory, algorithms, and stability analysis, International Journal of Computer Vision 17 (1996), no. 1, 43–75.CrossRef Quan-Tuan Luong and Olivier D Faugeras, The fundamental matrix: Theory, algorithms, and stability analysis, International Journal of Computer Vision 17 (1996), no. 1, 43–75.CrossRef
38.
go back to reference Yi Ma, Stefano Soatto, Jana Košecká, and Shankar Sastry, An Invitation to 3-D Vision: from Images to Geometric Models, vol. 26, Springer, 2004. Yi Ma, Stefano Soatto, Jana Košecká, and Shankar Sastry, An Invitation to 3-D Vision: from Images to Geometric Models, vol. 26, Springer, 2004.
39.
go back to reference Laurentiu G Maxim, Jose I Rodriguez, and Botong Wang, Euclidean distance degree of the multiview variety, SIAM Journal on Applied Algebra and Geometry 4 (2020), no. 1, 28–48.MathSciNetCrossRef Laurentiu G Maxim, Jose I Rodriguez, and Botong Wang, Euclidean distance degree of the multiview variety, SIAM Journal on Applied Algebra and Geometry 4 (2020), no. 1, 28–48.MathSciNetCrossRef
40.
go back to reference Mateusz Michałek and Bernd Sturmfels, Invitation to Nonlinear Algebra, vol. 211, American Mathematical Society, 2021. Mateusz Michałek and Bernd Sturmfels, Invitation to Nonlinear Algebra, vol. 211, American Mathematical Society, 2021.
41.
go back to reference Behrooz Nasihatkon, Richard Hartley, and Jochen Trumpf, A generalized projective reconstruction theorem and depth constraints for projective factorization, International Journal of Computer Vision 115 (2015), no. 2, 87–114.MathSciNetCrossRef Behrooz Nasihatkon, Richard Hartley, and Jochen Trumpf, A generalized projective reconstruction theorem and depth constraints for projective factorization, International Journal of Computer Vision 115 (2015), no. 2, 87–114.MathSciNetCrossRef
42.
go back to reference David Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004), no. 6, 756–770.CrossRefPubMed David Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004), no. 6, 756–770.CrossRefPubMed
44.
go back to reference Patrik Persson and Kalle Åström, Global trifocal adjustment, Scandinavian Conference on Image Analysis, Springer, 2019, pp. 287–298. Patrik Persson and Kalle Åström, Global trifocal adjustment, Scandinavian Conference on Image Analysis, Springer, 2019, pp. 287–298.
45.
go back to reference Long Quan, Invariants of six points and projective reconstruction from three uncalibrated images, IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995), no. 1, 34–46.CrossRef Long Quan, Invariants of six points and projective reconstruction from three uncalibrated images, IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995), no. 1, 34–46.CrossRef
46.
go back to reference Michel Raynaud and Laurent Gruson, Criteres de platitude et de projectivité, Inventiones Mathematicae 13 (1971), no. 1, 1–89.ADSMathSciNetCrossRef Michel Raynaud and Laurent Gruson, Criteres de platitude et de projectivité, Inventiones Mathematicae 13 (1971), no. 1, 1–89.ADSMathSciNetCrossRef
47.
go back to reference Antonio L Rodríguez, Pedro E López-de Teruel, and Alberto Ruiz, Reduced epipolar cost for accelerated incremental SfM, IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 3097–3104. Antonio L Rodríguez, Pedro E López-de Teruel, and Alberto Ruiz, Reduced epipolar cost for accelerated incremental SfM, IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 3097–3104.
48.
go back to reference Ewelina Rupnik and Marc Deseilligny, Towards structureless bundle adjustment with two-and three-view structure approximation, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 2, 2020, pp. 71–78.CrossRef Ewelina Rupnik and Marc Deseilligny, Towards structureless bundle adjustment with two-and three-view structure approximation, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 2, 2020, pp. 71–78.CrossRef
49.
go back to reference Frederik Schaffalitzky, Andrew Zisserman, Richard I. Hartley, and Philip H. S. Torr, A six point solution for structure and motion, European Conference on Computer Vision (David Vernon, ed.), vol. 1842, Springer, 2000, pp. 632–648. Frederik Schaffalitzky, Andrew Zisserman, Richard I. Hartley, and Philip H. S. Torr, A six point solution for structure and motion, European Conference on Computer Vision (David Vernon, ed.), vol. 1842, Springer, 2000, pp. 632–648.
50.
go back to reference J. Schneider, C. Stachniss, and W. Förstner, On the quality and efficiency of approximate solutions to bundle adjustment with epipolar and trifocal constraints, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W3 (2017), 81–88. J. Schneider, C. Stachniss, and W. Förstner, On the quality and efficiency of approximate solutions to bundle adjustment with epipolar and trifocal constraints, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W3 (2017), 81–88.
51.
go back to reference Amnon Shashua and Lior Wolf, On the structure and properties of the quadrifocal tensor, European Conference on Computer Vision, Springer, 2000, pp. 710–724. Amnon Shashua and Lior Wolf, On the structure and properties of the quadrifocal tensor, European Conference on Computer Vision, Springer, 2000, pp. 710–724.
52.
go back to reference Richard Steffen, Jan-Michael Frahm, and Wolfgang Förstner, Relative bundle adjustment based on trifocal constraints, European Conference on Computer Vision, Springer, 2010, pp. 282–295. Richard Steffen, Jan-Michael Frahm, and Wolfgang Förstner, Relative bundle adjustment based on trifocal constraints, European Conference on Computer Vision, Springer, 2010, pp. 282–295.
53.
go back to reference Henrik Stewénius, Gröbner basis methods for minimal problems in computer vision, PhD thesis 2005. Henrik Stewénius, Gröbner basis methods for minimal problems in computer vision, PhD thesis 2005.
54.
go back to reference Henrik Stewénius, Frederik Schaffalitzky, and David Nistér, How hard is 3-view triangulation really?, IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 686–693. Henrik Stewénius, Frederik Schaffalitzky, and David Nistér, How hard is 3-view triangulation really?, IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 686–693.
55.
go back to reference Bernd Sturmfels, Gröbner bases and Convex Polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. Bernd Sturmfels, Gröbner bases and Convex Polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
56.
go back to reference Bernd Sturmfels and Andrei Zelevinsky, Maximal minors and their leading terms, Advances in Mathematics 98 (1993), no. 1, 65–112.MathSciNetCrossRef Bernd Sturmfels and Andrei Zelevinsky, Maximal minors and their leading terms, Advances in Mathematics 98 (1993), no. 1, 65–112.MathSciNetCrossRef
57.
go back to reference Camillo J Taylor and David J Kriegman, Structure and motion from line segments in multiple images, IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995), no. 11, 1021–1032. Camillo J Taylor and David J Kriegman, Structure and motion from line segments in multiple images, IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995), no. 11, 1021–1032.
58.
go back to reference Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic robotics, MIT Press, 2005. Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic robotics, MIT Press, 2005.
59.
go back to reference Matthew Trager, Martial Hebert, and Jean Ponce, The joint image handbook, IEEE International Conference on Computer Vision, 2015, pp. 909–917. Matthew Trager, Martial Hebert, and Jean Ponce, The joint image handbook, IEEE International Conference on Computer Vision, 2015, pp. 909–917.
60.
go back to reference Matthew Trager, Martial Hebert, and Jean Ponce, Coordinate-free carlsson-weinshall duality and relative multi-view geometry, IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 225–233. Matthew Trager, Martial Hebert, and Jean Ponce, Coordinate-free carlsson-weinshall duality and relative multi-view geometry, IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 225–233.
61.
go back to reference Bill Triggs, Matching Constraints and the Joint Image, IEEE International Conference on Computer Vision, 1995, pp. 338–343. Bill Triggs, Matching Constraints and the Joint Image, IEEE International Conference on Computer Vision, 1995, pp. 338–343.
62.
go back to reference Bill Triggs, Factorization methods for projective structure and motion, IEEE Conference on Computer Vision and Pattern Recognition, 1996, pp. 845–851. Bill Triggs, Factorization methods for projective structure and motion, IEEE Conference on Computer Vision and Pattern Recognition, 1996, pp. 845–851.
63.
go back to reference Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon, Bundle Adjustment—a Modern Synthesis, International Workshop on Vision Algorithms, Springer, 1999, pp. 298–372. Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon, Bundle Adjustment—a Modern Synthesis, International Workshop on Vision Algorithms, Springer, 1999, pp. 298–372.
Metadata
Title
An Atlas for the Pinhole Camera
Authors
Sameer Agarwal
Timothy Duff
Max Lieblich
Rekha R. Thomas
Publication date
20-09-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09592-6

Premium Partner