Skip to main content
Top

2023 | OriginalPaper | Chapter

An Automated Process to Filter UAS-Based Point Clouds

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Digital Terrain Models (DTMs), which represent the topography of the bare Earth surface, are widely used in many geomatics applications. In parallel to the emergence of sophisticated Unmanned Aerial Systems (UASs) in recent years, they are produced from point clouds generated through aerial images taken from digital imaging systems mounted on UASs. The first and most important step of DTM production is to remove the points of the above-ground objects such as trees, buildings, bridges, etc. A great variety of point cloud filtering strategies have been developed so far. However, due to the irregularities in the topography of the Earth's surface, all proposed approaches employ several user-defined parameters, which makes point cloud filtering dependent on the parameter values defined. Since complex topographies make it very hard to define some protocols to estimate the best parameter values, users usually have to try a large number of parameter values for optimal filtering performance, which is neither practical nor time-efficient. Hence, this study proposed to use the metaheuristic Whale Optimization Algorithm (WOA) to estimate the parameters of a simple morphology-based (SMRF) point cloud filtering algorithm to improve its performance, automating the filtering process. The performance of the proposed filtering methodology was compared not only against that of the standard SMRF algorithm but also against those of popular filtering algorithms Cloth Simulation Filtering (CSF) and Progressive TIN Densification (PTIN). The results showed that the proposed filtering methodology outperformed the PTIN and standard SMRF algorithms and presented a comparable performance with the CSF algorithm, which is one of the most robust point cloud filtering algorithms proposed to date. It can also be concluded that metaheuristic optimization algorithms can be used to automate the point cloud filtering process, minimizing the filtering errors caused by user intervention.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Birdal AC, Avdan U, Türk T (2017) Estimating tree heights with images from an unmanned aerial vehicle. Geomat Nat Haz Risk 8(2):1144–1156CrossRef Birdal AC, Avdan U, Türk T (2017) Estimating tree heights with images from an unmanned aerial vehicle. Geomat Nat Haz Risk 8(2):1144–1156CrossRef
3.
go back to reference Chou TY, Yeh ML, Chen YC, Chen YH (2010) Disaster monitoring and management by the unmanned aerial vehicle technology. In: ISPRS TC VII symposium—100 years ISPRS, Vienna, Austria Chou TY, Yeh ML, Chen YC, Chen YH (2010) Disaster monitoring and management by the unmanned aerial vehicle technology. In: ISPRS TC VII symposium—100 years ISPRS, Vienna, Austria
4.
go back to reference Dubbini M, Curzio LI, Campedelli A (2016) Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: case study of the Roman castrum of Burnum (Croatia). J Archaeol Sci Rep 8:121–134 Dubbini M, Curzio LI, Campedelli A (2016) Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: case study of the Roman castrum of Burnum (Croatia). J Archaeol Sci Rep 8:121–134
5.
go back to reference Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environ Monit Assess 190(1):28CrossRef Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environ Monit Assess 190(1):28CrossRef
6.
go back to reference Kachamba DJ, Ørka HO, Gobakken T, Eid T, Mwase W (2016) Biomass estimation using 3D data from unmanned aerial vehicle imagery in a tropical woodland. Remote Sens 8(11):968CrossRef Kachamba DJ, Ørka HO, Gobakken T, Eid T, Mwase W (2016) Biomass estimation using 3D data from unmanned aerial vehicle imagery in a tropical woodland. Remote Sens 8(11):968CrossRef
7.
go back to reference Mohan M, Silva CA, Klauberg C, Jat P, Catts G, Cardil A, Hudak AT, Dia M (2017) Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 8(9):340CrossRef Mohan M, Silva CA, Klauberg C, Jat P, Catts G, Cardil A, Hudak AT, Dia M (2017) Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 8(9):340CrossRef
8.
go back to reference Iglesias L, Santos-Berbel D, Pascual V, Castro M (2019) Using small unmanned aerial vehicle in 3D modeling of highways with tree-covered roadsides to estimate sight distance. Remote Sens 11(22):2625CrossRef Iglesias L, Santos-Berbel D, Pascual V, Castro M (2019) Using small unmanned aerial vehicle in 3D modeling of highways with tree-covered roadsides to estimate sight distance. Remote Sens 11(22):2625CrossRef
9.
go back to reference Yilmaz V, Güngör O (2019) Estimating crown diameters in urban forests with unmanned aerial system-based photogrammetric point clouds. Int J Remote Sens 40(2):468–505CrossRef Yilmaz V, Güngör O (2019) Estimating crown diameters in urban forests with unmanned aerial system-based photogrammetric point clouds. Int J Remote Sens 40(2):468–505CrossRef
10.
go back to reference Yücel MA, Şanlıyüksel Yücel D, Yalçıner CÇ, Yılmaz D (2018) 3D modelling of historical remains using unmanned aerial vehicle, a case study: Gallipoli Peninsula. In: XXVIII international symposium on modern technologies, education and professional practice in geodesy and related fields, pp.101–107, Sofia, Bulgaria Yücel MA, Şanlıyüksel Yücel D, Yalçıner CÇ, Yılmaz D (2018) 3D modelling of historical remains using unmanned aerial vehicle, a case study: Gallipoli Peninsula. In: XXVIII international symposium on modern technologies, education and professional practice in geodesy and related fields, pp.101–107, Sofia, Bulgaria
11.
go back to reference Serifoglu Yilmaz C, Yilmaz V, Güngör O (2018) Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. Int J Remote Sens 39(15–16):5016–5042CrossRef Serifoglu Yilmaz C, Yilmaz V, Güngör O (2018) Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. Int J Remote Sens 39(15–16):5016–5042CrossRef
12.
go back to reference Yilmaz V (2021) Automated ground filtering of LiDAR and UAS point clouds with metaheuristics. Opt Laser Technol 138:106890CrossRef Yilmaz V (2021) Automated ground filtering of LiDAR and UAS point clouds with metaheuristics. Opt Laser Technol 138:106890CrossRef
13.
go back to reference Pingel TJ, Clarke KC, McBride WA (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J Photogramm Remote Sens 77:21–30CrossRef Pingel TJ, Clarke KC, McBride WA (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J Photogramm Remote Sens 77:21–30CrossRef
14.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
15.
go back to reference Graham A, Coops NC, Wilcox M, Plowright A (2019) Evaluation of ground surface models derived from unmanned aerial systems with digital aerial photogrammetry in a disturbed conifer forest. Remote Sens 11(1):84CrossRef Graham A, Coops NC, Wilcox M, Plowright A (2019) Evaluation of ground surface models derived from unmanned aerial systems with digital aerial photogrammetry in a disturbed conifer forest. Remote Sens 11(1):84CrossRef
16.
go back to reference Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15CrossRef Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15CrossRef
17.
go back to reference Mostafa Bozorgi S, Yazdani S (2019) IWOA: An improved whale optimization algorithm for optimization problems. J Comput Design Eng 6(3):243–259CrossRef Mostafa Bozorgi S, Yazdani S (2019) IWOA: An improved whale optimization algorithm for optimization problems. J Comput Design Eng 6(3):243–259CrossRef
18.
go back to reference Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24CrossRef Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24CrossRef
19.
go back to reference Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59(1–2):85–101CrossRef Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59(1–2):85–101CrossRef
20.
go back to reference Montealegre AL, Lamelas MT, De La Riva J (2015) A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE J Select Topics Appl Earth Obs Remote Sens 8(8):4072–4085CrossRef Montealegre AL, Lamelas MT, De La Riva J (2015) A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE J Select Topics Appl Earth Obs Remote Sens 8(8):4072–4085CrossRef
21.
go back to reference Zhang W, Qi J, Wan P, Wang H, Xie D, Wang X, Yan G (2016) An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens 8(6):501CrossRef Zhang W, Qi J, Wan P, Wang H, Xie D, Wang X, Yan G (2016) An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens 8(6):501CrossRef
22.
go back to reference Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Archiv Photogramm Remote Sens 33(4):110–117 Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Archiv Photogramm Remote Sens 33(4):110–117
Metadata
Title
An Automated Process to Filter UAS-Based Point Clouds
Author
Volkan Yilmaz
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-19309-5_20