Skip to main content
Top

10-09-2024 | Research

An Automatic Software Testing Method to Discover Hard-to-Detect Faults Using Hybrid Olympiad Optimization Algorithm

Authors: Leiqing Zheng, Bahman Arasteh, Mahsa Nazeri Mehrabani, Amir Vahide Abania

Published in: Journal of Electronic Testing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The enhancement of software system quality is achieved through a process called software testing, which is a time and cost-intensive stage of software development. As a result, automating software tests is recognized as an effective solution that can simplify time-consuming and arduous testing activities. Generating test data with maximum branch coverage and fault discovery capability is an NP-complete optimization problem. Various methods based on heuristics and evolutionary algorithms have been suggested to create test suites that provide the most feasible coverage. The main disadvantages of past approaches include inadequate branching coverage, fault detection rate, and unstable results. The main objectives of the current research are to improve the branch coverage rate, fault detection rate, success rate, and stability. This research has suggested an efficient technique to produce test data automatically utilizing a hybrid version of Olympiad Optimization Algorithms (OOA) in conjunction with genetic algorithm (GA) operators theory. Maximum coverage, fault detection capability, and success rate are the main characteristics of produced test data. Various experiments have been conducted on the nine standard benchmark programs. Regarding the results, the suggested method provides 99.92% average coverage, a success rate of 99.20%, an average generation of 5.76, and an average time of 7.97 s. Based on the fault injection experiment’s results, the proposed method can discover about 89% of the faults injected by mutation testing tools such as MuJava.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Footnotes
1
Route and path have been used in a same meaning in this study.
 
Literature
1.
go back to reference Ammann P, Offutt J’ (2017) Introduction to Software Testing’, Cambridge University Press, ISBN 978-1-107-17201-2 Ammann P, Offutt J’ (2017) Introduction to Software Testing’, Cambridge University Press, ISBN 978-1-107-17201-2
2.
go back to reference Lin JC, Yeh PL (2001) Automatic Test Data Generation for path testing using GAs. J Inform Sci 131(1):47–64CrossRef Lin JC, Yeh PL (2001) Automatic Test Data Generation for path testing using GAs. J Inform Sci 131(1):47–64CrossRef
4.
go back to reference Marcelo M, Eler AT, Endo, Vinicius HS, Durelli, An empirical study to quantify the characteristics of Java programs that may influence symbolic execution from a unit testing perspective, (2016) Cristian C., Koushik S. S., Symbolic Execution For Software Testing: Three Decades Later, Communications of the ACM, Vol. 56 No. 2, Pages 82–90. 2013 Marcelo M, Eler AT, Endo, Vinicius HS, Durelli, An empirical study to quantify the characteristics of Java programs that may influence symbolic execution from a unit testing perspective, (2016) Cristian C., Koushik S. S., Symbolic Execution For Software Testing: Three Decades Later, Communications of the ACM, Vol. 56 No. 2, Pages 82–90. 2013
5.
go back to reference Cristian C, Koushik SS (2013) Symbolic execution for software testing: three decades later. Communications of the ACM 56(2):82–90. 2013 Cristian C, Koushik SS (2013) Symbolic execution for software testing: three decades later. Communications of the ACM 56(2):82–90. 2013
6.
go back to reference Cohen MB, Colbourn CJ, Ling ACH (2003) Augmenting simulated annealing to build interaction test suites, In: Proceedings of the Fourteenth International Symposium on Software Reliability Engineering (ISSRE’03), pp. 394–405 Cohen MB, Colbourn CJ, Ling ACH (2003) Augmenting simulated annealing to build interaction test suites, In: Proceedings of the Fourteenth International Symposium on Software Reliability Engineering (ISSRE’03), pp. 394–405
7.
go back to reference Sharma C, Sabharwal S, Sibal R (2014) A Survey on Software Testing techniques using genetic algorithm. Int J Comput Sci 10(1):381–393 Sharma C, Sabharwal S, Sibal R (2014) A Survey on Software Testing techniques using genetic algorithm. Int J Comput Sci 10(1):381–393
8.
go back to reference Esnaashari M, Damia AH (2021) Automation of software test data generation using genetic algorithm and reinforcement learning. Expert Syst Appl 183:115446CrossRef Esnaashari M, Damia AH (2021) Automation of software test data generation using genetic algorithm and reinforcement learning. Expert Syst Appl 183:115446CrossRef
9.
go back to reference Mao C (2014) Generating Test Data for Software Structural Testing based on particle swarm optimization. Arab J Sci Eng 39(6):4593–4607CrossRef Mao C (2014) Generating Test Data for Software Structural Testing based on particle swarm optimization. Arab J Sci Eng 39(6):4593–4607CrossRef
10.
go back to reference Kaur A, Bhatt D (2011) Hybrid particle swarm optimization for regression testing. Int J Comput Sci Eng Vol 3(5):1815–1824 Kaur A, Bhatt D (2011) Hybrid particle swarm optimization for regression testing. Int J Comput Sci Eng Vol 3(5):1815–1824
11.
go back to reference Ahmed BS, Zamli KZ (2011) A variable strength interaction test suites generation strategy using particle swarm optimization. J Syst Softw 84:2171–2185CrossRef Ahmed BS, Zamli KZ (2011) A variable strength interaction test suites generation strategy using particle swarm optimization. J Syst Softw 84:2171–2185CrossRef
12.
go back to reference Ghaemi A, Arasteh B (2020) SFLA-based heuristic method to generate software structural test data. J Softw Evol, 32, 1 Ghaemi A, Arasteh B (2020) SFLA-based heuristic method to generate software structural test data. J Softw Evol, 32, 1
13.
go back to reference Aghdam ZK, Arasteh B (2017) An efficient method to Generate Test Data for Software Structural Testing using Artificial Bee colony optimization algorithm. Int J Softw Eng Knowl Eng 27(6):951–966CrossRef Aghdam ZK, Arasteh B (2017) An efficient method to Generate Test Data for Software Structural Testing using Artificial Bee colony optimization algorithm. Int J Softw Eng Knowl Eng 27(6):951–966CrossRef
14.
go back to reference Mao C, Xiao L, Yu X, Chen J (2015) Adapting ant colony optimization to Generate Test Data for Software Structural Testing. J Swarm Evolutionary Comput 20:23–36CrossRef Mao C, Xiao L, Yu X, Chen J (2015) Adapting ant colony optimization to Generate Test Data for Software Structural Testing. J Swarm Evolutionary Comput 20:23–36CrossRef
Metadata
Title
An Automatic Software Testing Method to Discover Hard-to-Detect Faults Using Hybrid Olympiad Optimization Algorithm
Authors
Leiqing Zheng
Bahman Arasteh
Mahsa Nazeri Mehrabani
Amir Vahide Abania
Publication date
10-09-2024
Publisher
Springer US
Published in
Journal of Electronic Testing
Print ISSN: 0923-8174
Electronic ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-024-06136-4