Skip to main content
Top
Published in: Wireless Personal Communications 1/2020

28-04-2020

An Effective Channel Estimation for Massive MIMO–OFDM System

Authors: Tanairat Mata, Pisit Boonsrimuang

Published in: Wireless Personal Communications | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The massive Multiple-Input and Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO–OFDM) system provides a high data transmission for the next generation mobile communication i.e. 4G, 5G, etc. In the practical MIMO–OFDM system, N points of IFFT/FFT is larger than M data subcarriers (\(N>M\)) in each OFDM symbol to reject the aliasing after D/A converter. To demodulate information data, the channel responses for all MIMO channel links need to be estimated so as to employ in MIMO data detection for demodulation at the receiver. The discrete Fourier transform estimator (DFE) was proposed for the system which can estimate the MIMO channels accurately when \(N=M\). However, its accuracy will be hugely degraded when \(N>M\) because of the oversampling of data transmission. To improve the estimation accuracy when \(N>M\), the maximum likelihood estimator (MLE) was proposed for the system which can achieve higher estimation accuracy than that of the DFE. However, its accuracy will be degraded a lot in the massive MIMO–OFDM system when \(N>M\), due to the estimation error increased in proportion to the increasing of \(N_T\) transmit antennas. To solve these problems, this paper proposes a direct time-domain estimator (DTE) with preamble symbol with scattered-pilot (preamble-SCP) for the massive MIMO–OFDM system when \(N>M\). In the proposed method, it is presented with three salient features; achieving higher estimation accuracy with keeping almost the same computational complexity as the conventional estimators, improving \(Bit-Error-Rate\) (BER) with low-complexity MIMO data detection, and providing higher transmission data rate compared with the MLE. Using the \(normalized\,MSE\), BER and throughput evaluated by computer simulations, it can be verified that the proposed DTE with preamble-SCP obviously provides higher estimation accuracy, better BER with low-complexity MIMO data detection, and much higher transmission data rate which is approximately 32.5 Mbps gain over the MLE at 5 MHz-BW respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Mobile WiMAX - Part 1: A Technical Overview and Performance Evaluation, WiMAX Forum, 2006. Mobile WiMAX - Part 1: A Technical Overview and Performance Evaluation, WiMAX Forum, 2006.
4.
go back to reference Nee, R. V., Jones, V. K., Awater, G., Zelst, A. V., Gardner, J., & Steele, G. (2006). The 802.11n MIMO–OFDM standard for wireless LAN and beyond. Wireless Personal Communication, 37, 445–453.CrossRef Nee, R. V., Jones, V. K., Awater, G., Zelst, A. V., Gardner, J., & Steele, G. (2006). The 802.11n MIMO–OFDM standard for wireless LAN and beyond. Wireless Personal Communication, 37, 445–453.CrossRef
5.
go back to reference Frenzel, L. E. (2013). An introduction to LTE-advanced: the real 4G, Electronic design, pp. 32–38. Frenzel, L. E. (2013). An introduction to LTE-advanced: the real 4G, Electronic design, pp. 32–38.
6.
go back to reference Li, Y. G., Winters, J. H., & Sollenberger, N. R. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.CrossRef Li, Y. G., Winters, J. H., & Sollenberger, N. R. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.CrossRef
7.
go back to reference Sure, P., & Bhuma, C. M. (2015). A pilot aided channel estimator using DFT based time interpolation for massive MIMO–OFDM systems. AEU International Journal of Electronics and Communications, 69(1), 321–327.CrossRef Sure, P., & Bhuma, C. M. (2015). A pilot aided channel estimator using DFT based time interpolation for massive MIMO–OFDM systems. AEU International Journal of Electronics and Communications, 69(1), 321–327.CrossRef
8.
go back to reference Technologies, Vehicular. (2011). M. Diallo, M. Helard, L. Cariou, R. Rabineau, DFT based channel estimation methods for MIMO-OFDM systems, InTech. Increasing Connectivity, 97–114. Technologies, Vehicular. (2011). M. Diallo, M. Helard, L. Cariou, R. Rabineau, DFT based channel estimation methods for MIMO-OFDM systems, InTech. Increasing Connectivity, 97–114.
9.
go back to reference Mata, T., Naito, K., Boonsrimuang, P., Mori, K., & Kobayashi, H. (2014). Proposal of channel estimation method for ITS systems by using STBC MIMO–OFDM. ECTI Transactions on Computer and Information Technology, 8(1), 36–44. Mata, T., Naito, K., Boonsrimuang, P., Mori, K., & Kobayashi, H. (2014). Proposal of channel estimation method for ITS systems by using STBC MIMO–OFDM. ECTI Transactions on Computer and Information Technology, 8(1), 36–44.
10.
go back to reference Kobayashi, H., & Mori, K. (2005). Proposal of OFDM channel estimation method using Discrete Cosine Transform. IEICE Transaction on Communication (Japanese edition), J88–B(2), 256–268. Kobayashi, H., & Mori, K. (2005). Proposal of OFDM channel estimation method using Discrete Cosine Transform. IEICE Transaction on Communication (Japanese edition), J88–B(2), 256–268.
11.
go back to reference Jariwala, P.P., & Lapsiwala, P. (2013). Review: Performance Evolution of Different Detection Techniques in V-BLAST. in Proceeding of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT2013), pp. 1–5. Jariwala, P.P., & Lapsiwala, P. (2013). Review: Performance Evolution of Different Detection Techniques in V-BLAST. in Proceeding of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT2013), pp. 1–5.
12.
go back to reference Golden, G. D., Foschini, C. J., Valenzuela, R. A., & Wolniansky, P. W. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. IEEE Electronics Letter, 35(1), 14–16.CrossRef Golden, G. D., Foschini, C. J., Valenzuela, R. A., & Wolniansky, P. W. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. IEEE Electronics Letter, 35(1), 14–16.CrossRef
13.
go back to reference Mohaisen, M., An, H., & Chang, K. H. (2009). Detection techniques for MIMO multiplexing: A comparative review. KSII Transactions on Internet and Information Systems, 3(6), 647–666. Mohaisen, M., An, H., & Chang, K. H. (2009). Detection techniques for MIMO multiplexing: A comparative review. KSII Transactions on Internet and Information Systems, 3(6), 647–666.
14.
go back to reference Lu, H.-Y., Yen, M.-H., & Chen, B.-S. (2018). Fast group detection for massive MIMOs. IET Communications, 12(13), 1602–1608.CrossRef Lu, H.-Y., Yen, M.-H., & Chen, B.-S. (2018). Fast group detection for massive MIMOs. IET Communications, 12(13), 1602–1608.CrossRef
15.
go back to reference Soria, V., Arévalo, G. V., Ávila, P., Tello, F., & Santamaría, C. G. (2018). Performance comparison of \(2\times 2\) and \(4\times 4\) V-BLAST and Alamouti MIMO systems. IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–4. Soria, V., Arévalo, G. V., Ávila, P., Tello, F., & Santamaría, C. G. (2018). Performance comparison of \(2\times 2\) and \(4\times 4\) V-BLAST and Alamouti MIMO systems. IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–4.
16.
go back to reference Larson, E. G. (2009). MIMO detection methods: How they work. IEEE Signal Processing Magazine, 26(3), 91–95.CrossRef Larson, E. G. (2009). MIMO detection methods: How they work. IEEE Signal Processing Magazine, 26(3), 91–95.CrossRef
Metadata
Title
An Effective Channel Estimation for Massive MIMO–OFDM System
Authors
Tanairat Mata
Pisit Boonsrimuang
Publication date
28-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07359-2

Other articles of this Issue 1/2020

Wireless Personal Communications 1/2020 Go to the issue