Skip to main content
Top

23-07-2024 | Original Research

An Effective Crow Search Algorithm and Its Application in Data Clustering

Authors: Rajesh Ranjan, Jitender Kumar Chhabra

Published in: Journal of Classification

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In today’s data-centric world, the significance of generated data has increased manifold. Clustering the data into a similar group is one of the dynamic research areas among other data practices. Several algorithms’ proposals exist for clustering. Apart from the traditional algorithms, researchers worldwide have successfully employed some metaheuristic approaches for clustering. The crow search algorithm (CSA) is a recently introduced swarm-based algorithm that imitates the performance of the crow. An effective crow search algorithm (ECSA) has been proposed in the present work, which dynamically attunes its parameter to sustain the search balance and perform an oppositional-based random initialization. The ECSA is evaluated over CEC2019 Benchmark Functions and simulated for data clustering tasks compared with well-known metaheuristic approaches and famous partition-based K-means algorithm over benchmark datasets. The results reveal that the ECSA performs better than other algorithms in the context of external cluster quality metrics and convergence rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abualigah, L. M., Khader, A. T., Hanandeh, E. S., & Gandomi, A. H. (2017). A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Applied Soft Computing, 60, 423–435.CrossRef Abualigah, L. M., Khader, A. T., Hanandeh, E. S., & Gandomi, A. H. (2017). A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Applied Soft Computing, 60, 423–435.CrossRef
go back to reference Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.MathSciNetCrossRef Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.MathSciNetCrossRef
go back to reference Alswaitti, M., Albughdadi, M., & Isa, N. A. M. (2018). Density-based particle swarm optimization algorithm for data clustering. Expert Systems with Applications, 91, 170–186.CrossRef Alswaitti, M., Albughdadi, M., & Isa, N. A. M. (2018). Density-based particle swarm optimization algorithm for data clustering. Expert Systems with Applications, 91, 170–186.CrossRef
go back to reference Amarjeet, & Chhabra, J. K. (2018). Many-objective artificial bee colony algorithm for large-scale software module clustering problem. Soft Computing, 22(19), 6341–6361.CrossRef Amarjeet, & Chhabra, J. K. (2018). Many-objective artificial bee colony algorithm for large-scale software module clustering problem. Soft Computing, 22(19), 6341–6361.CrossRef
go back to reference Andrews, J. L., & McNicholas, P. D. (2014). Variable selection for clustering and classification. Journal of Classification, 31(2), 136–153.MathSciNetCrossRef Andrews, J. L., & McNicholas, P. D. (2014). Variable selection for clustering and classification. Journal of Classification, 31(2), 136–153.MathSciNetCrossRef
go back to reference Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169, 1–12.CrossRef Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169, 1–12.CrossRef
go back to reference Barshandeh, S., Dana, R., & Eskandarian, P. (2022). A learning automata-based hybrid MPA and JS algorithm for numerical optimization problems and its application on data clustering. Knowledge-Based Systems, 236, 107682.CrossRef Barshandeh, S., Dana, R., & Eskandarian, P. (2022). A learning automata-based hybrid MPA and JS algorithm for numerical optimization problems and its application on data clustering. Knowledge-Based Systems, 236, 107682.CrossRef
go back to reference Blake, C., & Merz, C.J. (1998). {UC I} repository of machine learning databases repository of machine learning databases. Blake, C., & Merz, C.J. (1998). {UC I} repository of machine learning databases repository of machine learning databases.
go back to reference Bogar, E., & Beyhan, S. (2020). Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems. Applied Soft Computing, 95, 106503.CrossRef Bogar, E., & Beyhan, S. (2020). Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems. Applied Soft Computing, 95, 106503.CrossRef
go back to reference Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American Society for Information Science, 45(1), 12–19.CrossRef Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American Society for Information Science, 45(1), 12–19.CrossRef
go back to reference Chhabra, J. K. (2017). Harmony search based remodularization for object-oriented software systems. Computer Languages, Systems and Structures, 47, 153–169.CrossRef Chhabra, J. K. (2017). Harmony search based remodularization for object-oriented software systems. Computer Languages, Systems and Structures, 47, 153–169.CrossRef
go back to reference Chuang, L. Y., Hsiao, C. J., & Yang, C. H. (2011). Chaotic particle swarm optimization for data clustering. Expert Systems with Applications, 38(12), 14555–14563.CrossRef Chuang, L. Y., Hsiao, C. J., & Yang, C. H. (2011). Chaotic particle swarm optimization for data clustering. Expert Systems with Applications, 38(12), 14555–14563.CrossRef
go back to reference Cuevas, E., Barocio Espejo, E., Conde Enríquez, A., Cuevas, E., Barocio Espejo, E., & Conde Enríquez, A. (2019). A modified crow search algorithm with applications to power system problems. Metaheuristics algorithms in power systems, 137–166. Cuevas, E., Barocio Espejo, E., Conde Enríquez, A., Cuevas, E., Barocio Espejo, E., & Conde Enríquez, A. (2019). A modified crow search algorithm with applications to power system problems. Metaheuristics algorithms in power systems, 137–166.
go back to reference Das, S., Abraham, A., & Konar, A. (2007). Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part a: Systems and Humans, 38(1), 218–237.CrossRef Das, S., Abraham, A., & Konar, A. (2007). Automatic clustering using an improved differential evolution algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part a: Systems and Humans, 38(1), 218–237.CrossRef
go back to reference Das, S., Abraham, A., & Konar, A. (2008). Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5), 688–699.CrossRef Das, S., Abraham, A., & Konar, A. (2008). Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 29(5), 688–699.CrossRef
go back to reference Deeb, H., Sarangi, A., Mishra, D., & Sarangi, S. K. (2022). Improved Black Hole optimization algorithm for data clustering. Journal of King Saud University-Computer and Information Sciences, 34(8), 5020–5029.CrossRef Deeb, H., Sarangi, A., Mishra, D., & Sarangi, S. K. (2022). Improved Black Hole optimization algorithm for data clustering. Journal of King Saud University-Computer and Information Sciences, 34(8), 5020–5029.CrossRef
go back to reference Demirci, H., Yurtay, N., Yurtay, Y., & Zaimoğlu, E. A. (2022). Electrical search algorithm: A new metaheuristic algorithm for clustering problem. Arabian Journal for Science and Engineering, 1–20. Demirci, H., Yurtay, N., Yurtay, Y., & Zaimoğlu, E. A. (2022). Electrical search algorithm: A new metaheuristic algorithm for clustering problem. Arabian Journal for Science and Engineering, 1–20.
go back to reference Dutta, D., Dutta, P., & Sil, J. (2012). Data clustering with mixed features by multi objective genetic algorithm. In 2012 12th International Conference on Hybrid Intelligent Systems (HIS) (pp. 336–341). IEEE. Dutta, D., Dutta, P., & Sil, J. (2012). Data clustering with mixed features by multi objective genetic algorithm. In 2012 12th International Conference on Hybrid Intelligent Systems (HIS) (pp. 336–341). IEEE.
go back to reference Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. John Wiley & Sons.CrossRef Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. John Wiley & Sons.CrossRef
go back to reference Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., & Muhuri, P. K. (2021). Metaheuristics: A comprehensive overview and classification along with bibliometric analysis. Artificial Intelligence Review, 54, 4237–4316.CrossRef Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., & Muhuri, P. K. (2021). Metaheuristics: A comprehensive overview and classification along with bibliometric analysis. Artificial Intelligence Review, 54, 4237–4316.CrossRef
go back to reference Gong, W., & Cai, Z. (2013). Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics, 43(6), 2066–2081.CrossRef Gong, W., & Cai, Z. (2013). Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics, 43(6), 2066–2081.CrossRef
go back to reference Hassanzadeh, T., & Meybodi, M. R. (2012). A new hybrid approach for data clustering using firefly algorithm and K-means. In The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012) (pp. 007–011). IEEE. Hassanzadeh, T., & Meybodi, M. R. (2012). A new hybrid approach for data clustering using firefly algorithm and K-means. In The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012) (pp. 007–011). IEEE.
go back to reference Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef
go back to reference Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.CrossRef Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.CrossRef
go back to reference Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264–323.CrossRef Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264–323.CrossRef
go back to reference Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.CrossRef Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.CrossRef
go back to reference Kaur, A., & Kumar, Y. (2022a). A new metaheuristic algorithm based on water wave optimization for data clustering. Evolutionary Intelligence, 15(1), 759–783.CrossRef Kaur, A., & Kumar, Y. (2022a). A new metaheuristic algorithm based on water wave optimization for data clustering. Evolutionary Intelligence, 15(1), 759–783.CrossRef
go back to reference Kaur, A., & Kumar, Y. (2022b). Neighborhood search based improved bat algorithm for data clustering. Applied Intelligence, 52(9), 10541–10575.CrossRef Kaur, A., & Kumar, Y. (2022b). Neighborhood search based improved bat algorithm for data clustering. Applied Intelligence, 52(9), 10541–10575.CrossRef
go back to reference Kumar, V., Chhabra, J. K., & Kumar, D. (2017). Grey wolf algorithm-based clustering technique. Journal of Intelligent Systems, 26(1), 153–168.MathSciNetCrossRef Kumar, V., Chhabra, J. K., & Kumar, D. (2017). Grey wolf algorithm-based clustering technique. Journal of Intelligent Systems, 26(1), 153–168.MathSciNetCrossRef
go back to reference Kuo, R. J., & Zulvia, F. E. (2019). An improved differential evolution with cluster decomposition algorithm for automatic clustering. Soft Computing, 23(18), 8957–8973.CrossRef Kuo, R. J., & Zulvia, F. E. (2019). An improved differential evolution with cluster decomposition algorithm for automatic clustering. Soft Computing, 23(18), 8957–8973.CrossRef
go back to reference Kuo, R. J., Huang, Y. D., Lin, C. C., Wu, Y. H., & Zulvia, F. E. (2014). Automatic kernel clustering with bee colony optimization algorithm. Information Sciences, 283, 107–122.CrossRef Kuo, R. J., Huang, Y. D., Lin, C. C., Wu, Y. H., & Zulvia, F. E. (2014). Automatic kernel clustering with bee colony optimization algorithm. Information Sciences, 283, 107–122.CrossRef
go back to reference Lakshmi, K., Visalakshi, N. K., & Shanthi, S. (2018). Data clustering using k-means based on crow search algorithm. Sādhanā, 43(11), 190.MathSciNetCrossRef Lakshmi, K., Visalakshi, N. K., & Shanthi, S. (2018). Data clustering using k-means based on crow search algorithm. Sādhanā, 43(11), 190.MathSciNetCrossRef
go back to reference Nayak, J., Kanungo, D. P., Naik, B., & Behera, H. S. (2016). Evolutionary improved swarm-based hybrid K-means algorithm for cluster analysis. In Proceedings of the Second International Conference on Computer and Communication Technologies: IC3T 2015, Volume 1 (pp. 343–352). Springer India. Nayak, J., Kanungo, D. P., Naik, B., & Behera, H. S. (2016). Evolutionary improved swarm-based hybrid K-means algorithm for cluster analysis. In Proceedings of the Second International Conference on Computer and Communication Technologies: IC3T 2015, Volume 1 (pp. 343–352). Springer India.
go back to reference Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University, 1, 1–21. Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University, 1, 1–21.
go back to reference Rahman, M. A., & Islam, M. Z. (2014). A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowledge-Based Systems, 71, 345–365.CrossRef Rahman, M. A., & Islam, M. Z. (2014). A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowledge-Based Systems, 71, 345–365.CrossRef
go back to reference Rahnema, N., & Gharehchopogh, F. S. (2020). An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multimedia Tools and Applications, 79(43–44), 32169–32194.CrossRef Rahnema, N., & Gharehchopogh, F. S. (2020). An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multimedia Tools and Applications, 79(43–44), 32169–32194.CrossRef
go back to reference Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19–34. Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19–34.
go back to reference Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus external cluster validation indexes. International Journal of Computers and Communications, 5(1), 27–34. Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus external cluster validation indexes. International Journal of Computers and Communications, 5(1), 27–34.
go back to reference Roberts, S. J. (1997). Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition, 30(2), 261–272.MathSciNetCrossRef Roberts, S. J. (1997). Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition, 30(2), 261–272.MathSciNetCrossRef
go back to reference Roux, M. (2018). A comparative study of divisive and agglomerative hierarchical clustering algorithms. Journal of Classification, 35, 345–366.MathSciNetCrossRef Roux, M. (2018). A comparative study of divisive and agglomerative hierarchical clustering algorithms. Journal of Classification, 35, 345–366.MathSciNetCrossRef
go back to reference Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering using firefly algorithm: Performance study. Swarm and Evolutionary Computation, 1(3), 164–171.CrossRef Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering using firefly algorithm: Performance study. Swarm and Evolutionary Computation, 1(3), 164–171.CrossRef
go back to reference Sharma, M., & Chhabra, J. K. (2021). An efficient hybrid PSO polygamous crossover based clustering algorithm. Evolutionary Intelligence, 14(3), 1213–1231.CrossRef Sharma, M., & Chhabra, J. K. (2021). An efficient hybrid PSO polygamous crossover based clustering algorithm. Evolutionary Intelligence, 14(3), 1213–1231.CrossRef
go back to reference Sundararajan, S., & Karthikeyan, S. (2014). An efficient hybrid approach for data clustering using dynamic K-means algorithm and firefly algorithm. Journal of Engineering and Applied Science, 9(8), 1348–1353. Sundararajan, S., & Karthikeyan, S. (2014). An efficient hybrid approach for data clustering using dynamic K-means algorithm and firefly algorithm. Journal of Engineering and Applied Science, 9(8), 1348–1353.
go back to reference Talbi, E. G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons. Talbi, E. G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.
go back to reference Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (Vol. 1, pp. 695–701). IEEE. Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (Vol. 1, pp. 695–701). IEEE.
go back to reference Torrente, A., & Romo, J. (2021). Initializing k-means clustering by bootstrap and data depth. Journal of Classification, 38, 232–256.MathSciNetCrossRef Torrente, A., & Romo, J. (2021). Initializing k-means clustering by bootstrap and data depth. Journal of Classification, 38, 232–256.MathSciNetCrossRef
go back to reference Tseng, L. Y., & Yang, S. B. (2001). A genetic approach to the automatic clustering problem. Pattern Recognition, 34(2), 415–424.CrossRef Tseng, L. Y., & Yang, S. B. (2001). A genetic approach to the automatic clustering problem. Pattern Recognition, 34(2), 415–424.CrossRef
go back to reference Van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215–220). IEEE. Van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215–220). IEEE.
go back to reference Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.CrossRef Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.CrossRef
go back to reference Yang, X. S., Ting, T. O., & Karamanoglu, M. (2013). Random walks, Lévy flights, Markov chains and metaheuristic optimization. Future Information Communication Technology and Applications: ICFICE, 2013, 1055–1064.CrossRef Yang, X. S., Ting, T. O., & Karamanoglu, M. (2013). Random walks, Lévy flights, Markov chains and metaheuristic optimization. Future Information Communication Technology and Applications: ICFICE, 2013, 1055–1064.CrossRef
go back to reference Zhao, M., Tang, H., Guo, J., & Sun, Y. (2014). Data clustering using particle swarm optimization. In Future Information Technology: FutureTech 2014 (pp. 607–612). Springer Berlin Heidelberg. Zhao, M., Tang, H., Guo, J., & Sun, Y. (2014). Data clustering using particle swarm optimization. In Future Information Technology: FutureTech 2014 (pp. 607–612). Springer Berlin Heidelberg.
Metadata
Title
An Effective Crow Search Algorithm and Its Application in Data Clustering
Authors
Rajesh Ranjan
Jitender Kumar Chhabra
Publication date
23-07-2024
Publisher
Springer US
Published in
Journal of Classification
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-024-09486-y

Premium Partner