Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-06-2015 | Regular research paper | Issue 2/2015

Memetic Computing 2/2015

An effective multiobjective approach for hard partitional clustering

Journal:
Memetic Computing > Issue 2/2015
Authors:
Jay Prakash, P. K. Singh

Abstract

Clustering is an unsupervised classification method in the field of data mining. Many population based evolutionary and swarm intelligence optimization methods are proposed to optimize clustering solutions globally based on a single selected objective function which lead to produce a single best solution. In this sense, optimized solution is biased towards a single objective, hence it is not equally well to the data set having clusters of different geometrical properties. Thus, clustering having multiple objectives should be naturally optimized through multiobjective optimization methods for capturing different properties of the data set. To achieve this clustering goal, many multiobjective population based optimization methods, e.g., multiobjective genetic algorithm, mutiobjective particle swarm optimization (MOPSO), are proposed to obtain diverse tradeoff solutions in the pareto-front. As single directional diversity mechanism in particle swarm optimization converges prematurely to local optima, this paper presents a two-stage diversity mechanism in MOPSO to improve its exploratory capabilities by incorporating crossover operator of the genetic algorithm. External archive is used to store non-dominated solutions, which is further utilized to find one best solution having highest F-measure value at the end of the run. Two conceptually orthogonal internal measures SSE and connectedness are used to estimate the clustering quality. Results demonstrate effectiveness of the proposed method over its competitors MOPSO, non-dominated sorting genetic algorithm, and multiobjective artificial bee colony on seven real data sets from UCI machine learning repository.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2015

Memetic Computing 2/2015 Go to the issue

Editorial

Editorial

Premium Partner

    Image Credits