Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-06-2022

An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN

Authors: P. C. Senthil Mahesh, S. Hemalatha

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

Android smartphones are employed widely due to its flexible programming system with several user-oriented features in daily lives. With the substantial growth rate of smartphone technologies, cyber-attack against such devices has surged at an exponential rate. Majority of the smartphone users grant permission blindly to various arbitrary applications and hence it weakens the efficiency of the authorization mechanism. Numerous approaches were established in effective malware detection, but due to certain limitations like low identification rate, low malware detection rate as well as category detection, the results obtained are ineffective. Therefore, this paper proposes a convolutional neural network based adaptive red fox optimization (CNN-ARFO) approach to detect the malware applications as benign or malware. The proposed approach comprising of three different phases namely the pre-processing phase, feature extraction phase and the detection phase for the effective detection of android malware applications. In the pre-processing phase, the selected dataset utilizes Minmax technique to normalize the features. Then the malicious APK and the collected benign apps are investigated to identify and extract the essential features for the proper functioning of malware in the extraction phase. Finally, the android mobile applications are detected using CNN based ARFO approach. Then the results based on detecting the benign and malicious applications from the android mobiles are demonstrated by evaluating certain parameters like model accuracy rate, model loss rate, accuracy, precision, recall and f-measure. The resulting outcome revealed that the detection accuracy achieved by the proposed approach is 97.29%.
Literature
1.
go back to reference Syrris, V., & Geneiatakis, D. (2021). On machine learning effectiveness for malware detection in android OS using static analysis data. Journal of Information Security and Applications, 59, 102794. CrossRef Syrris, V., & Geneiatakis, D. (2021). On machine learning effectiveness for malware detection in android OS using static analysis data. Journal of Information Security and Applications, 59, 102794. CrossRef
2.
go back to reference Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086. CrossRef Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086. CrossRef
3.
go back to reference Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098. CrossRef Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098. CrossRef
4.
go back to reference Bhatia, T., & Kaushal R. (2017). Malware detection in android based on dynamic analysis. In 2017 International conference on cyber security and protection of digital services ( Cyber security) (pp. 1–6). IEEE. Bhatia, T., & Kaushal R. (2017). Malware detection in android based on dynamic analysis. In 2017 International conference on cyber security and protection of digital services ( Cyber security) (pp. 1–6). IEEE.
5.
go back to reference Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C. (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529–3552. CrossRef Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C. (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529–3552. CrossRef
6.
go back to reference Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. CrossRef Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. CrossRef
7.
go back to reference Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Intenational Journal of Intelligent Engineering and Systems, 9(3), 117–126. CrossRef Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Intenational Journal of Intelligent Engineering and Systems, 9(3), 117–126. CrossRef
8.
go back to reference Sundararaj, V., Anoop, V., Dixit, P., Arjaria, A., Chourasia, U., Bhambri, P., Rejeesh, M. R., & Sundararaj, R. (2020). CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system. Progress in Photovoltaics Research and Applications, 28(11), 1128–1145. CrossRef Sundararaj, V., Anoop, V., Dixit, P., Arjaria, A., Chourasia, U., Bhambri, P., Rejeesh, M. R., & Sundararaj, R. (2020). CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system. Progress in Photovoltaics Research and Applications, 28(11), 1128–1145. CrossRef
9.
go back to reference Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197. CrossRef Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197. CrossRef
10.
go back to reference Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288. CrossRef Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288. CrossRef
11.
go back to reference Rejeesh, M. R. (2019). Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools and Applications, 78(16), 22691–22710. CrossRef Rejeesh, M. R. (2019). Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools and Applications, 78(16), 22691–22710. CrossRef
12.
go back to reference Kavitha, D., & Ravikumar, S. (2021). IOT and context-aware learning-based optimal neural network model for real-time health monitoring. Transactions on Emerging Telecommunications Technologies, 32(1), e4132. CrossRef Kavitha, D., & Ravikumar, S. (2021). IOT and context-aware learning-based optimal neural network model for real-time health monitoring. Transactions on Emerging Telecommunications Technologies, 32(1), e4132. CrossRef
13.
go back to reference Hassan, B. A., & Rashid, T. A. (2020). Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms. Data Brief, 28, 105046. CrossRef Hassan, B. A., & Rashid, T. A. (2020). Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms. Data Brief, 28, 105046. CrossRef
14.
go back to reference Hassan, B. A. (2020). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33, 1–20. Hassan, B. A. (2020). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33, 1–20.
15.
go back to reference Gowthul Alam, M. M., & Baulkani, S. (2017). Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm. International Journal of Business Intelligence and Data Mining, 12(3), 299. CrossRef Gowthul Alam, M. M., & Baulkani, S. (2017). Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm. International Journal of Business Intelligence and Data Mining, 12(3), 299. CrossRef
16.
go back to reference Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35–44. CrossRef Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35–44. CrossRef
17.
go back to reference Bayazit, E. C., Sahingoz, O. K., & Dogan, B. 2020. Malware detection in Android systems with traditional machine learning models: A survey. In 2020 International congress on human–computer interaction, optimization and robotic applications ( HORA) (pp. 1–8). IEEE. Bayazit, E. C., Sahingoz, O. K., & Dogan, B. 2020. Malware detection in Android systems with traditional machine learning models: A survey. In 2020 International congress on human–computer interaction, optimization and robotic applications ( HORA) (pp. 1–8). IEEE.
18.
go back to reference Millar, S., McLaughlin, N., Martinez del Rincon, J., Miller, P., & Zhao, Z. (2020). DANdroid: A multi-view discriminative adversarial network for obfuscated Android malware detection. In Proceedings of the tenth ACM conference on data and application security and privacy (pp. 353–364). Millar, S., McLaughlin, N., Martinez del Rincon, J., Miller, P., & Zhao, Z. (2020). DANdroid: A multi-view discriminative adversarial network for obfuscated Android malware detection. In Proceedings of the tenth ACM conference on data and application security and privacy (pp. 353–364).
19.
go back to reference Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2020). On the use of artificial malicious patterns for android malware detection. Computers & Security, 92, 101743. CrossRef Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2020). On the use of artificial malicious patterns for android malware detection. Computers & Security, 92, 101743. CrossRef
20.
go back to reference Wu, Q., Li, M., Zhu, X., & Liu, B. (2020). Mviidroid: A multiple view information integration approach for android malware detection and family identification. IEEE Multimedia, 27(4), 48–57. CrossRef Wu, Q., Li, M., Zhu, X., & Liu, B. (2020). Mviidroid: A multiple view information integration approach for android malware detection and family identification. IEEE Multimedia, 27(4), 48–57. CrossRef
21.
go back to reference Hussain, S.J., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N. Z., & Humayun. M (2019). IMIAD: Intelligent malware identification for android platform. In 2019 International conference on computer and information sciences ( ICCIS) (pp. 1–6). IEEE. Hussain, S.J., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N. Z., & Humayun. M (2019). IMIAD: Intelligent malware identification for android platform. In 2019 International conference on computer and information sciences ( ICCIS) (pp. 1–6). IEEE.
22.
go back to reference Feng, P., Ma, J., Sun, C., Xinpeng, Xu., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6, 30996–31011. CrossRef Feng, P., Ma, J., Sun, C., Xinpeng, Xu., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6, 30996–31011. CrossRef
23.
go back to reference Xiao, X., Zhang, S., Mercaldo, F., Guangwu, Hu., & Sangaiah, A. K. (2019). Android malware detection based on system call sequences and LSTM. Multimedia Tools and Applications, 78(4), 3979–3999. CrossRef Xiao, X., Zhang, S., Mercaldo, F., Guangwu, Hu., & Sangaiah, A. K. (2019). Android malware detection based on system call sequences and LSTM. Multimedia Tools and Applications, 78(4), 3979–3999. CrossRef
24.
go back to reference Imtiaz, S. I., urRehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (2021). DeepAMD: Detection and identification of android malware using high-efficient deep artificial neural network. Future Generation computer systems, 115, 844–856. CrossRef Imtiaz, S. I., urRehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (2021). DeepAMD: Detection and identification of android malware using high-efficient deep artificial neural network. Future Generation computer systems, 115, 844–856. CrossRef
25.
go back to reference Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for android malware detection using machine learning techniques. Neural Computing and Applications, 33(10), 5183–5240. CrossRef Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for android malware detection using machine learning techniques. Neural Computing and Applications, 33(10), 5183–5240. CrossRef
26.
go back to reference Zhu, H., Li, Y., Li, R., Li, J., You, Z.-H., & Song, H. (2020). Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malware detection. IEEE Transactions on Network Science and Engineering, 8, 984–994. CrossRef Zhu, H., Li, Y., Li, R., Li, J., You, Z.-H., & Song, H. (2020). Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malware detection. IEEE Transactions on Network Science and Engineering, 8, 984–994. CrossRef
27.
go back to reference Su, X., Shi, W., Xilong, Qu., Zheng, Y., & Liu, X. (2020). DroidDeep: Using deep belief network to characterize and detect Android malware. Soft Computing, 24, 1–14. CrossRef Su, X., Shi, W., Xilong, Qu., Zheng, Y., & Liu, X. (2020). DroidDeep: Using deep belief network to characterize and detect Android malware. Soft Computing, 24, 1–14. CrossRef
28.
go back to reference Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An efficient android malware detection system based on method-level behavioral semantic analysis. IEEE Access, 7, 69246–69256. CrossRef Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An efficient android malware detection system based on method-level behavioral semantic analysis. IEEE Access, 7, 69246–69256. CrossRef
29.
go back to reference Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035–3043. CrossRef Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035–3043. CrossRef
30.
go back to reference Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android malware detection using deep learning on API method sequences. arXiv:​1712.​08996. Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android malware detection using deep learning on API method sequences. arXiv:​1712.​08996.
31.
go back to reference Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems, 107, 509–521. CrossRef Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems, 107, 509–521. CrossRef
32.
go back to reference Jiang, X., Mao, B., Guan, J., & Huang, X. (2020). Android malware detection using fine-grained features. Scientific Program, 2020, 1–13. Jiang, X., Mao, B., Guan, J., & Huang, X. (2020). Android malware detection using fine-grained features. Scientific Program, 2020, 1–13.
33.
go back to reference Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. MATH
34.
go back to reference Garg, M., & Dhiman, G. (2020). Deep convolution neural network approach for defect inspection of textured surfaces. Journal of the Institute of Electronics and Computer, 2(1), 28–38. CrossRef Garg, M., & Dhiman, G. (2020). Deep convolution neural network approach for defect inspection of textured surfaces. Journal of the Institute of Electronics and Computer, 2(1), 28–38. CrossRef
35.
go back to reference Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. CrossRef Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. CrossRef
36.
go back to reference Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with Applications, 166, 114107. CrossRef Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with Applications, 166, 114107. CrossRef
37.
go back to reference Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685. CrossRef Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685. CrossRef
Metadata
Title
An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN
Authors
P. C. Senthil Mahesh
S. Hemalatha
Publication date
29-06-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09765-0