Skip to main content
Top
Published in:

01-12-2016 | Original Article

An empirical comparison of influence measurements for social network analysis

Authors: Khaled Almgren, Jeongkyu Lee

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The studying of social influence can be used to understand and solve many complicated problems in social network analysis such as predicting influential users. This paper focuses on the problem of predicting influential users on social networks. We introduce a three-level hierarchy that classifies the influence measurements. The hierarchy categorizes the influence measurements by three folds, i.e., models, types and algorithms. Using this hierarchy, we classify the existing influence measurements. We further compare them based on an empirical analysis in terms of performance, accuracy and correlation using datasets from two different social networks to investigate the feasibility of influence measurements. Our results show that predicting influential users does not only depend on the influence measurements but also on the nature of social networks. Our goal is to introduce a standardized baseline for the problem of predicting influential users on social networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Almgren K, Lee J (2015) Who influences whom: content-based approach for predicting influential users in social networks. In: International conference on advances in big data analytics, pp 89–99 Almgren K, Lee J (2015) Who influences whom: content-based approach for predicting influential users in social networks. In: International conference on advances in big data analytics, pp 89–99
go back to reference Almgren K, Lee J (2016) Applying an influence measurement framework to large social network. J Netw Technol 7(1):7 Almgren K, Lee J (2016) Applying an influence measurement framework to large social network. J Netw Technol 7(1):7
go back to reference Anger I, Kittl C (2011) Measuring influence on twitter. In: Proceedings of the 11th international conference on knowledge management and knowledge technologies. ACM, p 31 Anger I, Kittl C (2011) Measuring influence on twitter. In: Proceedings of the 11th international conference on knowledge management and knowledge technologies. ACM, p 31
go back to reference Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74 Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74
go back to reference Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, pp 1–4 Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, pp 1–4
go back to reference Black PE (2004) Sparse graph. In: Dictionary of algorithms and data structures. National Institute of Standards and Technology Black PE (2004) Sparse graph. In: Dictionary of algorithms and data structures. National Institute of Standards and Technology
go back to reference Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3):191–201CrossRef Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3):191–201CrossRef
go back to reference Brandes U (2001) A faster algorithm for betweenness centrality*. J Math Sociol 25(2):163–177CrossRefMATH Brandes U (2001) A faster algorithm for betweenness centrality*. J Math Sociol 25(2):163–177CrossRefMATH
go back to reference Cha M, Haddadi H, Benevenuto F, Gummadi PK (2010) Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17):30 Cha M, Haddadi H, Benevenuto F, Gummadi PK (2010) Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17):30
go back to reference Ellison NB et al (2007) Social network sites: definition, history, and scholarship. J Comput Mediat Commun 13(1):210–230MathSciNetCrossRef Ellison NB et al (2007) Social network sites: definition, history, and scholarship. J Comput Mediat Commun 13(1):210–230MathSciNetCrossRef
go back to reference Etherington D (2014) Flickr at 10: 1m photos shared per day, 170 % increase since making 1tb free. February 10:25–45 Etherington D (2014) Flickr at 10: 1m photos shared per day, 170 % increase since making 1tb free. February 10:25–45
go back to reference Granovetter MS (1973) The strength of weak ties. Am J Sociol 78:1360–1380CrossRef Granovetter MS (1973) The strength of weak ties. Am J Sociol 78:1360–1380CrossRef
go back to reference Katz E, Lazarsfeld PF (1955) Personal influence. The part played by people in the flow of mass communications. Transaction Publishers, New Brunswick Katz E, Lazarsfeld PF (1955) Personal influence. The part played by people in the flow of mass communications. Transaction Publishers, New Brunswick
go back to reference Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146 Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146
go back to reference Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web. ACM, pp 591–600 Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web. ACM, pp 591–600
go back to reference Leavitt A, Buchard E, Fischer D, Gilbert S (2009) The influentials: new approaches for analyzing influence on twitter. Web Ecol Project 4:1–18 Leavitt A, Buchard E, Fischer D, Gilbert S (2009) The influentials: new approaches for analyzing influence on twitter. Web Ecol Project 4:1–18
go back to reference Lee C, Kwak H, Park H, Moon S (2010) Finding influentials based on the temporal order of information adoption in twitter. In: Proceedings of the 19th international conference on World wide web. ACM, pp 1137–1138 Lee C, Kwak H, Park H, Moon S (2010) Finding influentials based on the temporal order of information adoption in twitter. In: Proceedings of the 19th international conference on World wide web. ACM, pp 1137–1138
go back to reference Li H, Cui JT, Ma JF (2015) Social influence study in online networks: a three-level review. J Comput Sci Technol 30(1):184–199MathSciNetCrossRef Li H, Cui JT, Ma JF (2015) Social influence study in online networks: a three-level review. J Comput Sci Technol 30(1):184–199MathSciNetCrossRef
go back to reference Li J, Peng W, Li T, Sun T (2013a) Social network user influence dynamics prediction. In: Web technologies and applications. Springer, pp 310–322 Li J, Peng W, Li T, Sun T (2013a) Social network user influence dynamics prediction. In: Web technologies and applications. Springer, pp 310–322
go back to reference Li X, Cheng S, Chen W, Jiang F (2013b) Novel user influence measurement based on user interaction in microblog. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM, pp 615–619 Li X, Cheng S, Chen W, Jiang F (2013b) Novel user influence measurement based on user interaction in microblog. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM, pp 615–619
go back to reference Liao Q, Wang W, Han Y, Zhang Q (2013) Analyzing the influential people in sina weibo dataset. In: Global communications conference (GLOBECOM), 2013 IEEE. IEEE, pp 3066–3071 Liao Q, Wang W, Han Y, Zhang Q (2013) Analyzing the influential people in sina weibo dataset. In: Global communications conference (GLOBECOM), 2013 IEEE. IEEE, pp 3066–3071
go back to reference Lü L, Zhang YC, Yeung CH, Zhou T (2011) Leaders in social networks, the delicious case. PloS One 6(6):e21,202CrossRef Lü L, Zhang YC, Yeung CH, Zhou T (2011) Leaders in social networks, the delicious case. PloS One 6(6):e21,202CrossRef
go back to reference Maharani W, Gozali AA, et al (2014) Degree centrality and eigenvector centrality in twitter. In: Telecommunication systems services and applications (TSSA), 2014 8th international conference on. IEEE, pp 1–5 Maharani W, Gozali AA, et al (2014) Degree centrality and eigenvector centrality in twitter. In: Telecommunication systems services and applications (TSSA), 2014 8th international conference on. IEEE, pp 1–5
go back to reference McConnell RM, Spinrad JP (1994) Linear-time modular decomposition and efficient transitive orientation of comparability graphs. SODA 94:536–545MathSciNetMATH McConnell RM, Spinrad JP (1994) Linear-time modular decomposition and efficient transitive orientation of comparability graphs. SODA 94:536–545MathSciNetMATH
go back to reference Newman ME (2001) Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016,132CrossRef Newman ME (2001) Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016,132CrossRef
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH
go back to reference Pempek TA, Yermolayeva YA, Calvert SL (2009) College students’ social networking experiences on facebook. J Appl Dev Psychol 30(3):227–238CrossRef Pempek TA, Yermolayeva YA, Calvert SL (2009) College students’ social networking experiences on facebook. J Appl Dev Psychol 30(3):227–238CrossRef
go back to reference Probst F, Grosswiele DKL, Pfleger DKR (2013) Who will lead and who will follow: identifying influential users in online social networks. Bus Inf Syst Eng 5(3):179–193CrossRef Probst F, Grosswiele DKL, Pfleger DKR (2013) Who will lead and who will follow: identifying influential users in online social networks. Bus Inf Syst Eng 5(3):179–193CrossRef
go back to reference Rabade R, Mishra N, Sharma S (2014) Survey of influential user identification techniques in online social networks. In: Recent advances in intelligent informatics. Springer, pp 359–370 Rabade R, Mishra N, Sharma S (2014) Survey of influential user identification techniques in online social networks. In: Recent advances in intelligent informatics. Springer, pp 359–370
go back to reference Reilly CF, Salinas D, De Leon D (2014) Ranking users based on influence in a directional social network. In: Computational science and computational intelligence (CSCI), 2014 international conference on, IEEE, vol 2, pp 237–240 Reilly CF, Salinas D, De Leon D (2014) Ranking users based on influence in a directional social network. In: Computational science and computational intelligence (CSCI), 2014 international conference on, IEEE, vol 2, pp 237–240
go back to reference Robertson S (2000) Evaluation in information retrieval. In: Lectures on information retrieval. Springer, pp 81–92 Robertson S (2000) Evaluation in information retrieval. In: Lectures on information retrieval. Springer, pp 81–92
go back to reference Sang J, Xu C (2013) Social influence analysis and application on multimedia sharing websites. ACM Trans Multimed Comput Commun Appl (TOMM) 9(1s):53MathSciNet Sang J, Xu C (2013) Social influence analysis and application on multimedia sharing websites. ACM Trans Multimed Comput Commun Appl (TOMM) 9(1s):53MathSciNet
go back to reference Scoot J (1992) Social network analysis theory and application. Sage, Newberry Park, CA Scoot J (1992) Social network analysis theory and application. Sage, Newberry Park, CA
go back to reference Singh S, Mishra N, Sharma S (2013) Survey of various techniques for determining influential users in social networks. In: Emerging trends in computing, communication and nanotechnology (ICE-CCN), 2013 international conference on, IEEE, pp 398–403 Singh S, Mishra N, Sharma S (2013) Survey of various techniques for determining influential users in social networks. In: Emerging trends in computing, communication and nanotechnology (ICE-CCN), 2013 international conference on, IEEE, pp 398–403
go back to reference Stelzner MA (2011) Social media marketing industry report. Soc Media Exam 41:1–12 Stelzner MA (2011) Social media marketing industry report. Soc Media Exam 41:1–12
go back to reference Sun B, Ng VT (2013) Identifying influential users by their postings in social networks. Springer, BerlinCrossRef Sun B, Ng VT (2013) Identifying influential users by their postings in social networks. Springer, BerlinCrossRef
go back to reference Sun C, Zhang L, Li Q (2013) Who are influentials on micro-blogging services: evidence from social network analysis. In: PACIS, p 25 Sun C, Zhang L, Li Q (2013) Who are influentials on micro-blogging services: evidence from social network analysis. In: PACIS, p 25
go back to reference Tang L, Liu H (2010) Community detection and mining in social media. Synth Lect Data Min Knowl Discov 2(1):1–137CrossRef Tang L, Liu H (2010) Community detection and mining in social media. Synth Lect Data Min Knowl Discov 2(1):1–137CrossRef
go back to reference Wang C, Chen W, Wang Y (2012) Scalable influence maximization for independent cascade model in large-scale social networks. Data Min Knowl Discov 25(3):545–576MathSciNetCrossRefMATH Wang C, Chen W, Wang Y (2012) Scalable influence maximization for independent cascade model in large-scale social networks. Data Min Knowl Discov 25(3):545–576MathSciNetCrossRefMATH
go back to reference Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum Res 34(4):441–458CrossRef Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum Res 34(4):441–458CrossRef
go back to reference Weng J, Lim EP, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining. ACM, pp 261–270 Weng J, Lim EP, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining. ACM, pp 261–270
go back to reference Yi X, Han Y, Wang X (2013) The evaluation of online social networks nodes influence based on users attribute and behavior. In: Frontiers in internet technologies. Springer, pp 9–20 Yi X, Han Y, Wang X (2013) The evaluation of online social networks nodes influence based on users attribute and behavior. In: Frontiers in internet technologies. Springer, pp 9–20
go back to reference Zafarani R, Abbasi MA, Liu H (2014) Social media mining: an introduction. Cambridge University Press, CambridgeCrossRef Zafarani R, Abbasi MA, Liu H (2014) Social media mining: an introduction. Cambridge University Press, CambridgeCrossRef
go back to reference Zhang Y, Mo J, He T (2012) User influence analysis on micro blog. In: Cloud computing and intelligent systems (CCIS), 2012 IEEE 2nd international conference on, IEEE, vol 3, pp 1474–1478 Zhang Y, Mo J, He T (2012) User influence analysis on micro blog. In: Cloud computing and intelligent systems (CCIS), 2012 IEEE 2nd international conference on, IEEE, vol 3, pp 1474–1478
Metadata
Title
An empirical comparison of influence measurements for social network analysis
Authors
Khaled Almgren
Jeongkyu Lee
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0360-y

Premium Partner