Skip to main content
Top

20-09-2023 | S.I.:Fuzzy Logic and Probabilistic Modelling of Uncertain Information Systems

An empirical evaluation of extreme learning machine uncertainty quantification for automated breast cancer detection

Authors: Debendra Muduli, Rakesh Ranjan Kumar, Jitesh Pradhan, Abhinav Kumar

Published in: Neural Computing and Applications

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Early detection and diagnosis are the key factors in decreasing the breast cancer mortality rate in medical image analysis. A randomized learning technique called extreme learning machine (ELM) plays a vital role in learning the single hidden layer feed-forward network with fast learning speed and good generalization. The input weight and bias are randomly generated and fixed during the ELM training phase, and subsequently, the analytical procedure determines the output weight. The extreme learning machine’s learning ability is based on three uncertainty factors: the number of hidden nodes, an input weight initialization, and the type of activation function in the hidden layer. Various breast classification works have experimented with extreme learning machine techniques and did not investigate the following factors. This paper evaluates the extreme learning machine model’s performance with different configurations on the standard ultra-sound breast cancer dataset, BUSI. The proposed extreme learning machine configuration model experimented on original and filtered ultra-sound images. A fivefold stratified cross-validation scheme is applied here to enhance the model’s generalization performance. The proposed computer-aided diagnosis (CAD) model provides 100% accuracy with the best extreme learning machine configurations. Then, we compare the classification results of the proposed model with typical variants of extreme learning machines like Hybrid ELM (HELM), online-sequential ELM (OS-ELM), Weighted ELM, and complex ELM (CELM). The experimental results demonstrate that the proposed extreme learning machine model is superior to existing models, offering good generalization without any feature extraction or reduction method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdel-Nasser M, Melendez J, Moreno A, Omer OA, Puig D (2017) Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92CrossRef Abdel-Nasser M, Melendez J, Moreno A, Omer OA, Puig D (2017) Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intell 59:84–92CrossRef
2.
go back to reference Abdul Salam M (2015) FPA-ELM model for stock market prediction. Int J Adv Res Comput Sci Softw Engi 5:1050–1063 Abdul Salam M (2015) FPA-ELM model for stock market prediction. Int J Adv Res Comput Sci Softw Engi 5:1050–1063
3.
go back to reference Ahmadi A, Davoudi S, Daliri MR (2019) Computer aided diagnosis system for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Comput Methods Programs Biomed 169:9–18CrossRef Ahmadi A, Davoudi S, Daliri MR (2019) Computer aided diagnosis system for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Comput Methods Programs Biomed 169:9–18CrossRef
4.
go back to reference Ban X, Liu R, Shen Q, Wang Y (2016) Weighted extreme learning machine for balance and optimization learning. In: 2016 4th International conference on cloud computing and intelligence systems (CCIS), pp 6–10 Ban X, Liu R, Shen Q, Wang Y (2016) Weighted extreme learning machine for balance and optimization learning. In: 2016 4th International conference on cloud computing and intelligence systems (CCIS), pp 6–10
5.
go back to reference Barata JCA, Hussein MS (2012) The Moore-Penrose pseudoinverse: a tutorial review of the theory. Braz J Phys 42(1):146–165CrossRef Barata JCA, Hussein MS (2012) The Moore-Penrose pseudoinverse: a tutorial review of the theory. Braz J Phys 42(1):146–165CrossRef
6.
go back to reference Bhusri S, Jain S, Virmani J (2016) Classification of breast lesions using the difference of statistical features. 7:1365–1372 Bhusri S, Jain S, Virmani J (2016) Classification of breast lesions using the difference of statistical features. 7:1365–1372
7.
go back to reference Bhusri S, Jain S, Virmani J (2017) Classification of breast lesions using texture ratio vector technique. In: Proceedings of the 11th INDIACom international conference on computing for sustainable global development, pp 6289–6293 Bhusri S, Jain S, Virmani J (2017) Classification of breast lesions using texture ratio vector technique. In: Proceedings of the 11th INDIACom international conference on computing for sustainable global development, pp 6289–6293
8.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2022) Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2022) Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRef
9.
go back to reference Broomhead D, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal signals and radar establishment malvern (United Kingdom) RSRE-MEMO-4148 Broomhead D, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal signals and radar establishment malvern (United Kingdom) RSRE-MEMO-4148
11.
go back to reference Chang RF, Wu WJ, Moon WK, Chen DR (2003) Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 29(5):679–686CrossRef Chang RF, Wu WJ, Moon WK, Chen DR (2003) Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 29(5):679–686CrossRef
12.
go back to reference Chang RF, Wu WJ, Moon WK, Chou YH, Chen DR (2003) Support vector machines for diagnosis of breast tumors on us images. Acad Radiol 10(2):189–197CrossRef Chang RF, Wu WJ, Moon WK, Chou YH, Chen DR (2003) Support vector machines for diagnosis of breast tumors on us images. Acad Radiol 10(2):189–197CrossRef
13.
go back to reference Chen DR, Chang RF, Huang YL (1999) Computer-aided diagnosis applied to us of solid breast nodules by using neural networks. Radiology 213(2):407–412CrossRef Chen DR, Chang RF, Huang YL (1999) Computer-aided diagnosis applied to us of solid breast nodules by using neural networks. Radiology 213(2):407–412CrossRef
14.
go back to reference Cheng H, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn 36(12):2967–2991MATHCrossRef Cheng H, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn 36(12):2967–2991MATHCrossRef
15.
go back to reference Cheng H, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317MATHCrossRef Cheng H, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317MATHCrossRef
16.
go back to reference Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Huang CS, Shen D, Chen CM (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Sci Rep 6(1):1–13 Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Huang CS, Shen D, Chen CM (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Sci Rep 6(1):1–13
17.
go back to reference Chyzhyk D, Savio A, Graña M (2015) Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw 68:23–33CrossRef Chyzhyk D, Savio A, Graña M (2015) Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw 68:23–33CrossRef
18.
go back to reference Das D, Nayak D, Dash R, Majhi B (2019) An empirical evaluation of extreme learning machine: application to handwritten character recognition. Multimed Tools Appl 78:1–29CrossRef Das D, Nayak D, Dash R, Majhi B (2019) An empirical evaluation of extreme learning machine: application to handwritten character recognition. Multimed Tools Appl 78:1–29CrossRef
19.
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res Proc Track 9:249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res Proc Track 9:249–256
20.
go back to reference Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong YK (2017) A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 62(19):7714–7728CrossRef Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong YK (2017) A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 62(19):7714–7728CrossRef
21.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770–778
22.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770–778
23.
go back to reference He YL, Geng ZQ, Xu Y, Zhu QX (2014) A hierarchical structure of extreme learning machine (helm) for high-dimensional datasets with noise. Neurocomputing 128:407–414CrossRef He YL, Geng ZQ, Xu Y, Zhu QX (2014) A hierarchical structure of extreme learning machine (helm) for high-dimensional datasets with noise. Neurocomputing 128:407–414CrossRef
24.
go back to reference Huang G, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst, Man, and Cybern, Part B (Cybern) 42(2):513–529CrossRef Huang G, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst, Man, and Cybern, Part B (Cybern) 42(2):513–529CrossRef
25.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
26.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
27.
go back to reference Huang YL, Chen DR (2005) Support vector machines in sonography: application to decision making in the diagnosis of breast cancer. Clin Imag 29(3):179–184CrossRef Huang YL, Chen DR (2005) Support vector machines in sonography: application to decision making in the diagnosis of breast cancer. Clin Imag 29(3):179–184CrossRef
28.
go back to reference Huang YL, Wang KL, Chen DR (2006) Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 15(2):164–169CrossRef Huang YL, Wang KL, Chen DR (2006) Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 15(2):164–169CrossRef
29.
go back to reference Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, Mickus A, Damaševičius R (2022) Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 22(3):807CrossRef Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, Mickus A, Damaševičius R (2022) Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 22(3):807CrossRef
30.
go back to reference Karlik B, Olgac AV (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1(4):111–122 Karlik B, Olgac AV (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1(4):111–122
31.
go back to reference Kasun LLC, Yang Y, Huang G, Zhang Z (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):3906–3918MathSciNetMATHCrossRef Kasun LLC, Yang Y, Huang G, Zhang Z (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):3906–3918MathSciNetMATHCrossRef
32.
go back to reference Kriti Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 39(2):536–560CrossRef Kriti Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 39(2):536–560CrossRef
33.
go back to reference Kriti D, Virmani J, Agarwal R (2021) A characterization approach for the review of cad systems designed for breast tumor classification using b-mode ultrasound images. Arch Comput Methods Eng 29 Kriti D, Virmani J, Agarwal R (2021) A characterization approach for the review of cad systems designed for breast tumor classification using b-mode ultrasound images. Arch Comput Methods Eng 29
34.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
35.
go back to reference Lee CY, Chen GL, Zhang ZX, Chou YH, Hsu CC (2018) Is intensity inhomogeneity correction useful for classification of breast cancer in sonograms using deep neural network?. J Healthc Eng Lee CY, Chen GL, Zhang ZX, Chou YH, Hsu CC (2018) Is intensity inhomogeneity correction useful for classification of breast cancer in sonograms using deep neural network?. J Healthc Eng
36.
go back to reference Li LN, Ouyang JH, Chen HL, Liu DY (2012) A computer aided diagnosis system for thyroid disease using extreme learning machine. J Med Syst 36(5):3327–3337CrossRef Li LN, Ouyang JH, Chen HL, Liu DY (2012) A computer aided diagnosis system for thyroid disease using extreme learning machine. J Med Syst 36(5):3327–3337CrossRef
37.
go back to reference Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68:306–314CrossRef Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68:306–314CrossRef
38.
go back to reference Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef
39.
go back to reference Lin C, Hou Y, Chen T, Chen K (2014) Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks. IEEE Trans Fuzzy Syst 22(3):693–699CrossRef Lin C, Hou Y, Chen T, Chen K (2014) Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks. IEEE Trans Fuzzy Syst 22(3):693–699CrossRef
40.
go back to reference Malar E, Kandaswamy A, Chakravarthy D, Dharan AG (2012) A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 42(9):898–905CrossRef Malar E, Kandaswamy A, Chakravarthy D, Dharan AG (2012) A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 42(9):898–905CrossRef
41.
go back to reference Muduli Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: a moth flame optimization based elm approach. Biomed Signal Process Control 59(101):912 Muduli Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: a moth flame optimization based elm approach. Biomed Signal Process Control 59(101):912
42.
go back to reference Muduli D, Dash R, Majhi B (2021) Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection. Biomed Signal Process Control 70(102):919 Muduli D, Dash R, Majhi B (2021) Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection. Biomed Signal Process Control 70(102):919
43.
go back to reference Muduli D, Dash R, Majhi B (2022) Automated diagnosis of breast cancer using multi-modal datasets: a deep convolution neural network based approach. Biomed Signal Process Control 71(102):825 Muduli D, Dash R, Majhi B (2022) Automated diagnosis of breast cancer using multi-modal datasets: a deep convolution neural network based approach. Biomed Signal Process Control 71(102):825
44.
go back to reference Nixon M, Aguado A (2002) Feature extraction and image processing, newnes. Elsevier) Linacre House, Jordan Hill, Oxford OX28DP 30:747–757 Nixon M, Aguado A (2002) Feature extraction and image processing, newnes. Elsevier) Linacre House, Jordan Hill, Oxford OX28DP 30:747–757
45.
go back to reference Pang T, Wong JHD, Ng WL, Chan CS (2021) Semi-supervised gan-based radiomics model for data augmentation in breast ultrasound mass classification. Comput Methods Programs Biomed 203(106):018 Pang T, Wong JHD, Ng WL, Chan CS (2021) Semi-supervised gan-based radiomics model for data augmentation in breast ultrasound mass classification. Comput Methods Programs Biomed 203(106):018
46.
go back to reference Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, Yi Z (2019) Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 52:185–198CrossRef Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, Yi Z (2019) Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 52:185–198CrossRef
48.
go back to reference Sahu A, Das PK, Meher S (2023) High accuracy hybrid cnn classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control 80(104):292 Sahu A, Das PK, Meher S (2023) High accuracy hybrid cnn classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control 80(104):292
49.
go back to reference Segyeong Joo, Woo Kyung Moon, Hee Chan Kim (2004) Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 1, pp 1397–1400 Segyeong Joo, Woo Kyung Moon, Hee Chan Kim (2004) Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 1, pp 1397–1400
50.
go back to reference Sharma SK, Zamani AT, Abdelsalam A, Muduli D, Alabrah AA, Parveen N, Alanazi SM (2023) A diabetes monitoring system and health-medical service composition model in cloud environment. IEEE Access 11:32,804-32,819CrossRef Sharma SK, Zamani AT, Abdelsalam A, Muduli D, Alabrah AA, Parveen N, Alanazi SM (2023) A diabetes monitoring system and health-medical service composition model in cloud environment. IEEE Access 11:32,804-32,819CrossRef
51.
go back to reference Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T (2016) Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194:87–94CrossRef Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T (2016) Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194:87–94CrossRef
52.
go back to reference Singh BK, Verma K, Thoke A (2016) Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 66:114–123CrossRef Singh BK, Verma K, Thoke A (2016) Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 66:114–123CrossRef
53.
go back to reference Society AC (2022) Breast cancer facts & figures 2021–2022 Society AC (2022) Breast cancer facts & figures 2021–2022
54.
go back to reference Song JH, Venkatesh SS, MD EFC, Cary TW, MD PHA, Sehgal CM (2005) Artificial neural network to aid differentiation of malignant and benign breast masses by ultrasound imaging. In: Walker WF, Emelianov SY (eds) Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, International Society for Optics and Photonics, SPIE, vol 5750, pp 148 – 152 Song JH, Venkatesh SS, MD EFC, Cary TW, MD PHA, Sehgal CM (2005) Artificial neural network to aid differentiation of malignant and benign breast masses by ultrasound imaging. In: Walker WF, Emelianov SY (eds) Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, International Society for Optics and Photonics, SPIE, vol 5750, pp 148 – 152
55.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
56.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
57.
go back to reference Wang D (2016) Randomized algorithms for training neural networks. Inf Sci 100(364–365):126–128MATHCrossRef Wang D (2016) Randomized algorithms for training neural networks. Inf Sci 100(364–365):126–128MATHCrossRef
58.
go back to reference Wang Z, Xin J, Sun P, Lin Z, Yao Y, Gao X (2018) Improved lung nodule diagnosis accuracy using lung ct images with uncertain class. Comput Methods Programs Biomed 162:197–209CrossRef Wang Z, Xin J, Sun P, Lin Z, Yao Y, Gao X (2018) Improved lung nodule diagnosis accuracy using lung ct images with uncertain class. Comput Methods Programs Biomed 162:197–209CrossRef
59.
go back to reference Xie W, Li Y, Ma Y (2016) Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 173:930–941CrossRef Xie W, Li Y, Ma Y (2016) Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 173:930–941CrossRef
60.
go back to reference Yang M, Moon WK, Wang YF, Bae MS, Huang C, Chen J, Chang R (2013) Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 32(12):2262–2273CrossRef Yang M, Moon WK, Wang YF, Bae MS, Huang C, Chen J, Chang R (2013) Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 32(12):2262–2273CrossRef
61.
go back to reference Zhang YD, Zhao G, Sun J, Wu X, Wang ZH, Liu HM, Govindaraj VV, Zhan T, Li J (2018) Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and jaya algorithm. Multimedia Tools and Applications 77(17):22,629-22,648CrossRef Zhang YD, Zhao G, Sun J, Wu X, Wang ZH, Liu HM, Govindaraj VV, Zhan T, Li J (2018) Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and jaya algorithm. Multimedia Tools and Applications 77(17):22,629-22,648CrossRef
62.
go back to reference Zhou S, Shi J, Zhu J, Cai Y, Wang R (2013) Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control 8(6):688–696CrossRef Zhou S, Shi J, Zhu J, Cai Y, Wang R (2013) Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control 8(6):688–696CrossRef
63.
go back to reference Zhuang Z, Yang Z, Raj ANJ, Wei C, Jin P, Zhuang S (2021) Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Comput Methods Programs Biomed 208(106):221 Zhuang Z, Yang Z, Raj ANJ, Wei C, Jin P, Zhuang S (2021) Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Comput Methods Programs Biomed 208(106):221
Metadata
Title
An empirical evaluation of extreme learning machine uncertainty quantification for automated breast cancer detection
Authors
Debendra Muduli
Rakesh Ranjan Kumar
Jitesh Pradhan
Abhinav Kumar
Publication date
20-09-2023
Publisher
Springer London
Published in
Neural Computing and Applications
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-08992-1

Premium Partner