Skip to main content
Top
Published in:

01-12-2023 | Review Paper

An empirical study of dermatoglyphics fingerprint pattern classification for human behavior analysis

Authors: Mokal Atul Bhimrao, Brijendra Gupta

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents an empirical study on dermatoglyphics fingerprint pattern classification for human behavior analysis. It introduces the importance of biometrics, particularly fingerprints, in real-world applications and security. The study categorizes various classification techniques, including deep learning-based methods, convolutional neural networks (CNN), machine learning algorithms, and optimization methods. Each technique is evaluated based on its performance, advantages, and limitations. The research also identifies gaps in current methodologies, offering insights for future improvements. The article concludes by summarizing the findings and suggesting potential avenues for further research in the field of fingerprint pattern classification and its implications for understanding human behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al_Sagheer RHA, Mona J, Abdulmohson A, Abdulameer MH (2018) Fingerprint classification model based on new combination of particle swarm optimization and support vector machine. Int J Civil Eng Technol 9(11):78–87 Al_Sagheer RHA, Mona J, Abdulmohson A, Abdulameer MH (2018) Fingerprint classification model based on new combination of particle swarm optimization and support vector machine. Int J Civil Eng Technol 9(11):78–87
go back to reference Alsharman N, Saaidah A,Almomani O, Jawarneh I, Al-Qaisi L (2022) Pattern mathematical model for fingerprint security using bifurcation minutiae extraction and neural network feature selection. Secur Commun Netw 2022(1):1–16. https://doi.org/10.1155/2022/4375232 Alsharman N, Saaidah A,Almomani O, Jawarneh I, Al-Qaisi L (2022) Pattern mathematical model for fingerprint security using bifurcation minutiae extraction and neural network feature selection. Secur Commun Netw 2022(1):1–16. https://​doi.​org/​10.​1155/​2022/​4375232
go back to reference Andono P, Supriyanto C (2015) Bag-of-visual-words model for fingerprint classification. Int Arab J Inf Technol 15(1):37–43 Andono P, Supriyanto C (2015) Bag-of-visual-words model for fingerprint classification. Int Arab J Inf Technol 15(1):37–43
go back to reference Andono PN, Supriyanto C, Nugroho S (2018) Image compression based on SVD for BoVW model in fingerprint classification. J Intell Fuzzy Syst 34(4):2513–2519CrossRef Andono PN, Supriyanto C, Nugroho S (2018) Image compression based on SVD for BoVW model in fingerprint classification. J Intell Fuzzy Syst 34(4):2513–2519CrossRef
go back to reference Birajadar P, Gadre V (2022) A scattering wavelet network-based approach to fingerprint classification. SAMRIDDHI: A J Phys Sci, Eng Technol 14(2):130–138 Birajadar P, Gadre V (2022) A scattering wavelet network-based approach to fingerprint classification. SAMRIDDHI: A J Phys Sci, Eng Technol 14(2):130–138
go back to reference Borra SR, Reddy GJ, Reddy ES (2017) Classification of fingerprint images with the aid of morphological operation and AGNN classifier. Appl Comput Informat 14(2):166–176CrossRef Borra SR, Reddy GJ, Reddy ES (2017) Classification of fingerprint images with the aid of morphological operation and AGNN classifier. Appl Comput Informat 14(2):166–176CrossRef
go back to reference Cao K, Pang L, Liang J, Tian J (2013) Fingerprint classification by a hierarchical classifier. Pattern Recogn 46(12):3186–3197CrossRef Cao K, Pang L, Liang J, Tian J (2013) Fingerprint classification by a hierarchical classifier. Pattern Recogn 46(12):3186–3197CrossRef
go back to reference Cimtay Y, Alkan B, Demirel B (2021) Fingerprint pattern classification by using various pre-trained deep neural networks. Avrupa Bilim Teknol Derg 24:258–261 Cimtay Y, Alkan B, Demirel B (2021) Fingerprint pattern classification by using various pre-trained deep neural networks. Avrupa Bilim Teknol Derg 24:258–261
go back to reference Darji K, Darji S, Nisar S, Joshi A (2021) Automatic dermatoglyphics multiple intelligence test based on fingerprint analysis using convolution neural network. In: Proceedings of innovative data communication technologies and application, pp 755–771 Darji K, Darji S, Nisar S, Joshi A (2021) Automatic dermatoglyphics multiple intelligence test based on fingerprint analysis using convolution neural network. In: Proceedings of innovative data communication technologies and application, pp 755–771
go back to reference Deepika KC, Shivakumar G (2021) A robust deep features enabled touchless 3d-fingerprint classification system. SN Comput Sci 2(4):1–8CrossRef Deepika KC, Shivakumar G (2021) A robust deep features enabled touchless 3d-fingerprint classification system. SN Comput Sci 2(4):1–8CrossRef
go back to reference Ding S, Shi S, Jia W (2019) Research on fingerprint classification based on twin support vector machine. IET Image Proc 14(2):231–235CrossRef Ding S, Shi S, Jia W (2019) Research on fingerprint classification based on twin support vector machine. IET Image Proc 14(2):231–235CrossRef
go back to reference Giansiracusa N, Giansiracusa R, Moon C (2019) Persistent homology machine learning for fingerprint classification. In: Proceedings of 2019 18th IEEE international conference on machine learning and applications (ICMLA), pp 1219–1226 Giansiracusa N, Giansiracusa R, Moon C (2019) Persistent homology machine learning for fingerprint classification. In: Proceedings of 2019 18th IEEE international conference on machine learning and applications (ICMLA), pp 1219–1226
go back to reference Guo JM, Liu YF, Chang JY, Lee JD (2013) Fingerprint classification based on decision tree from singular points and orientation field. Expert Syst Appl 41(2):752–764CrossRef Guo JM, Liu YF, Chang JY, Lee JD (2013) Fingerprint classification based on decision tree from singular points and orientation field. Expert Syst Appl 41(2):752–764CrossRef
go back to reference Guo X, Wu F, Tang X (2018) Fingerprint pattern identification and classification. In: 2018 14th international conference on natural computation, fuzzy systems and knowledge discovery, pp 1045–1050 Guo X, Wu F, Tang X (2018) Fingerprint pattern identification and classification. In: 2018 14th international conference on natural computation, fuzzy systems and knowledge discovery, pp 1045–1050
go back to reference Hamdi DE, Elouedi I, Fathallah A, Nguyen MK, Hamouda A (2018) Fingerprint classification using conic radon transform and convolutional neural networks. In: Proceedings of international conference on advanced concepts for intelligent vision systems, pp 402–413 Hamdi DE, Elouedi I, Fathallah A, Nguyen MK, Hamouda A (2018) Fingerprint classification using conic radon transform and convolutional neural networks. In: Proceedings of international conference on advanced concepts for intelligent vision systems, pp 402–413
go back to reference Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application
go back to reference Hou YJ, Xie ZX, Zhou CC (2021) An unsupervised deep-learning method for fingerprint classification: the CCAE network and the hybrid clustering strategy. arXiv preprint arXiv:2109.05526 Hou YJ, Xie ZX, Zhou CC (2021) An unsupervised deep-learning method for fingerprint classification: the CCAE network and the hybrid clustering strategy. arXiv preprint arXiv:​2109.​05526
go back to reference Hu J, Xie M (2010) Fingerprint classification based on genetic programming. In: Proceeding of 2010 2nd international conference on computer engineering and technology, vol 6, pp 193–196 Hu J, Xie M (2010) Fingerprint classification based on genetic programming. In: Proceeding of 2010 2nd international conference on computer engineering and technology, vol 6, pp 193–196
go back to reference Jawarneh I, Alsharman N (2021) The mathematical model and deep learning features selection for whorl fingerprint classifications. Int J Comput Intell Syst 14(1):1208–1216CrossRef Jawarneh I, Alsharman N (2021) The mathematical model and deep learning features selection for whorl fingerprint classifications. Int J Comput Intell Syst 14(1):1208–1216CrossRef
go back to reference Jeon WS, Rhee SY (2017) Fingerprint pattern classification using convolution neural network. Int J Fuzzy Log Intell Syst 17(3):170–176CrossRef Jeon WS, Rhee SY (2017) Fingerprint pattern classification using convolution neural network. Int J Fuzzy Log Intell Syst 17(3):170–176CrossRef
go back to reference Jian W, Zhou Y, Liu H (2020) Lightweight convolutional neural network based on singularity ROI for fingerprint classification. IEEE Access 8:54554–54563CrossRef Jian W, Zhou Y, Liu H (2020) Lightweight convolutional neural network based on singularity ROI for fingerprint classification. IEEE Access 8:54554–54563CrossRef
go back to reference Jung HW, Lee JH (2014) Noisy and incomplete fingerprint classification using local ridge distribution models. Pattern Recogn 48(2):473–484CrossRef Jung HW, Lee JH (2014) Noisy and incomplete fingerprint classification using local ridge distribution models. Pattern Recogn 48(2):473–484CrossRef
go back to reference Khazaal ZH, Mahdi SS (2018) Fingerprint classification based on orientation field. Int J Embeded Syst Appl 8(o.4):27–40 Khazaal ZH, Mahdi SS (2018) Fingerprint classification based on orientation field. Int J Embeded Syst Appl 8(o.4):27–40
go back to reference Kulkarni S (2011) Fingerprint feature extraction and classification by learning the characteristics of fingerprint patterns. Neural Netw World 21(3):219–226CrossRef Kulkarni S (2011) Fingerprint feature extraction and classification by learning the characteristics of fingerprint patterns. Neural Netw World 21(3):219–226CrossRef
go back to reference Liu M (2009) Fingerprint classification based on Adaboost learning from singularity features. Pattern Recogn 43(3):1062–1070CrossRef Liu M (2009) Fingerprint classification based on Adaboost learning from singularity features. Pattern Recogn 43(3):1062–1070CrossRef
go back to reference Luo J, Song D, Xiu C, Geng S, Dong T (2014) Fingerprint classification combining curvelet transform and gray-level cooccurrence matrix. Math Probl Eng Luo J, Song D, Xiu C, Geng S, Dong T (2014) Fingerprint classification combining curvelet transform and gray-level cooccurrence matrix. Math Probl Eng
go back to reference Manickam A, Ezhilmaran D, Soundrapandiyan R (2017) Local adjacent extrema pattern for fingerprint image classification. Proc IOP Confer Ser: Mater Sci Eng 263(4):042143CrossRef Manickam A, Ezhilmaran D, Soundrapandiyan R (2017) Local adjacent extrema pattern for fingerprint image classification. Proc IOP Confer Ser: Mater Sci Eng 263(4):042143CrossRef
go back to reference Manickam A, Haldar R, Saqlain SM, Sellam V, Soundrapandiyan R (2019) Fingerprint image classification using local diagonal and directional extrema patterns. J Electron Imaging 28(3):033027CrossRef Manickam A, Haldar R, Saqlain SM, Sellam V, Soundrapandiyan R (2019) Fingerprint image classification using local diagonal and directional extrema patterns. J Electron Imaging 28(3):033027CrossRef
go back to reference Militello C, Rundo L, Vitabile S, Conti V (2021) Fingerprint classification based on deep learning approaches: experimental findings and comparisons. Symmetry 13(5):750CrossRef Militello C, Rundo L, Vitabile S, Conti V (2021) Fingerprint classification based on deep learning approaches: experimental findings and comparisons. Symmetry 13(5):750CrossRef
go back to reference Mirzaei F, Biglari M, Ebrahimpour-komleh H, Shahrood I (2013) A novel rule-based fingerprint classification approach. Int J Digit Inf Wirel Commun 3(4):385–389 Mirzaei F, Biglari M, Ebrahimpour-komleh H, Shahrood I (2013) A novel rule-based fingerprint classification approach. Int J Digit Inf Wirel Commun 3(4):385–389
go back to reference Mishra A, Dehuri S (2019a) Real-time online fingerprint image classification using adaptive hybrid techniques. Int J Electr Comput Eng 9(5):2088–8708 Mishra A, Dehuri S (2019a) Real-time online fingerprint image classification using adaptive hybrid techniques. Int J Electr Comput Eng 9(5):2088–8708
go back to reference Mishra A, Dehuri S (2019b) Fingerprint classification by filter bank approach using evolutionary ANN. In: Proceedings of cognitive informatics and soft computing. Springer, pp 343–351 Mishra A, Dehuri S (2019b) Fingerprint classification by filter bank approach using evolutionary ANN. In: Proceedings of cognitive informatics and soft computing. Springer, pp 343–351
go back to reference Mishra A, Maheshwary P (2017) A novel technique for fingerprint classification based on naive bayes classifier and support vector machine. Int J Comput Appl 169:58–62 Mishra A, Maheshwary P (2017) A novel technique for fingerprint classification based on naive bayes classifier and support vector machine. Int J Comput Appl 169:58–62
go back to reference Nahar P, Tanwani S, Chaudhari NS (2018) Fingerprint classification using deep neural network model resnet50. Int J Res Analyt Rev 5(4):1521–1537 Nahar P, Tanwani S, Chaudhari NS (2018) Fingerprint classification using deep neural network model resnet50. Int J Res Analyt Rev 5(4):1521–1537
go back to reference Nguyen HT, Nguyen LT (2019) Fingerprints classification through image analysis and machine learning method. Algorithms 12(11):241CrossRef Nguyen HT, Nguyen LT (2019) Fingerprints classification through image analysis and machine learning method. Algorithms 12(11):241CrossRef
go back to reference Odongo WG, Mwangi W, Rimiru R (2018) Fingerprint classification using KMCG algorithm under varying window and codebook sizes. Int J Comput Appl 179(51):15–22 Odongo WG, Mwangi W, Rimiru R (2018) Fingerprint classification using KMCG algorithm under varying window and codebook sizes. Int J Comput Appl 179(51):15–22
go back to reference Peralta D, Triguero I, García S, Saeys Y, Benitez JM, Herrera F (2017) On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int J Intell Syst 33(1):213–230CrossRef Peralta D, Triguero I, García S, Saeys Y, Benitez JM, Herrera F (2017) On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int J Intell Syst 33(1):213–230CrossRef
go back to reference Pisharody AS, Pargaonkar S, Kulkarni VY (2015) Fingerprint classification and building a gender prediction model using random forest algorithm. Int J Knowl Eng Data Min 3(4):286–298CrossRef Pisharody AS, Pargaonkar S, Kulkarni VY (2015) Fingerprint classification and building a gender prediction model using random forest algorithm. Int J Knowl Eng Data Min 3(4):286–298CrossRef
go back to reference Rajanbabu DT (2009) Development of a simple Fingerprint Pattern verification method and construction of gummy fingerprint image models Rajanbabu DT (2009) Development of a simple Fingerprint Pattern verification method and construction of gummy fingerprint image models
go back to reference Rim B, Kim J, Hong M (2020) Fingerprint classification using deep learning approach. Multimedia Tools Appl 80(28):35809–35825 Rim B, Kim J, Hong M (2020) Fingerprint classification using deep learning approach. Multimedia Tools Appl 80(28):35809–35825
go back to reference Saeed F, Hussain M, Aboalsamh HA (2022) Automatic fingerprint classification using deep learning technology (DeepFKTNet). Mathematics 10(8):1285CrossRef Saeed F, Hussain M, Aboalsamh HA (2022) Automatic fingerprint classification using deep learning technology (DeepFKTNet). Mathematics 10(8):1285CrossRef
go back to reference Sasirekha K, Thangavel K (2018) A novel fingerprint classification system using BPNN with local binary pattern and weighted PCA. Int J Biometr 10(1):77–104CrossRef Sasirekha K, Thangavel K (2018) A novel fingerprint classification system using BPNN with local binary pattern and weighted PCA. Int J Biometr 10(1):77–104CrossRef
go back to reference Shrein JM (2017) Fingerprint classification using convolutional neural networks and ridge orientation images. In: Proceedings of 2017 IEEE symposium series on computational intelligence, pp 1–8 Shrein JM (2017) Fingerprint classification using convolutional neural networks and ridge orientation images. In: Proceedings of 2017 IEEE symposium series on computational intelligence, pp 1–8
go back to reference Tertychnyi P, Ozcinar C, Anbarjafari G (2018) Low-quality fingerprint classification using deep neural network. IET Biometr 7(6):550–556CrossRef Tertychnyi P, Ozcinar C, Anbarjafari G (2018) Low-quality fingerprint classification using deep neural network. IET Biometr 7(6):550–556CrossRef
go back to reference Vasan MD, Thakar BR (2019) predictive digital forensic model to track antisocial behavior based on dermatoglyphics. In: Proceedings of computing and network sustainability, pp 349–357 Vasan MD, Thakar BR (2019) predictive digital forensic model to track antisocial behavior based on dermatoglyphics. In: Proceedings of computing and network sustainability, pp 349–357
go back to reference Wang R,Han C, Guo T (2016a) A novel fingerprint classification method based on deep learning. In: proceedings of 2016a 23rd international conference on pattern recognition (ICPR), pp 931–936 Wang R,Han C, Guo T (2016a) A novel fingerprint classification method based on deep learning. In: proceedings of 2016a 23rd international conference on pattern recognition (ICPR), pp 931–936
go back to reference Wang Y, Wu Z, Zhang J (2016b) Damaged fingerprint classification by Deep Learning with fuzzy feature points. In: Proceedings of 2016b 9th international congress on image and signal processing, Biomedical engineering and informatics (CISP-BMEI), pp 280–285 Wang Y, Wu Z, Zhang J (2016b) Damaged fingerprint classification by Deep Learning with fuzzy feature points. In: Proceedings of 2016b 9th international congress on image and signal processing, Biomedical engineering and informatics (CISP-BMEI), pp 280–285
go back to reference Wu F, Zhu J, Guo X (2019) Fingerprint pattern identification and classification approach based on convolutional neural networks. Neural Comput Appl 32(10):5725–5734CrossRef Wu F, Zhu J, Guo X (2019) Fingerprint pattern identification and classification approach based on convolutional neural networks. Neural Comput Appl 32(10):5725–5734CrossRef
go back to reference Zabala-Blanco D, Mora M, Barrientos RJ, Hernández-García R, Naranjo-Torres J (2020) Fingerprint classification through standard and weighted extreme learning machines. Appl Sci 10(12):4125CrossRef Zabala-Blanco D, Mora M, Barrientos RJ, Hernández-García R, Naranjo-Torres J (2020) Fingerprint classification through standard and weighted extreme learning machines. Appl Sci 10(12):4125CrossRef
go back to reference Zhang Y, Gong B, Wang Q (2022) BLS-identification: a device fingerprint classification mechanism based on broad learning for internet of things. Digit Commun Netw Zhang Y, Gong B, Wang Q (2022) BLS-identification: a device fingerprint classification mechanism based on broad learning for internet of things. Digit Commun Netw
go back to reference Zia T, Ghafoor M, Tariq SA, Taj IA (2019) Robust fingerprint classification with Bayesian convolutional networks. IET Image Proc 13(8):1280–1288CrossRef Zia T, Ghafoor M, Tariq SA, Taj IA (2019) Robust fingerprint classification with Bayesian convolutional networks. IET Image Proc 13(8):1280–1288CrossRef
Metadata
Title
An empirical study of dermatoglyphics fingerprint pattern classification for human behavior analysis
Authors
Mokal Atul Bhimrao
Brijendra Gupta
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01072-1

Premium Partner