Skip to main content
Top

14-08-2024

An Empirical Study of Nature-Inspired Algorithms for Feature Selection in Medical Applications

Authors: Varun Arora, Parul Agarwal

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nature-inspired algorithms (NIA) are proven to be the potential tool for solving intricate optimization problems and aid in the development of better computational techniques. In recent years, these algorithms have raised considerable interest to optimize feature selection problems. In literature, NIA is found to select relevant features among available features in the diagnosis of many chronic diseases. In this paper, a comprehensive review of existing nature-inspired feature selection techniques is presented. Along with this, the fundamental definitions of feature selection and the usage of NIA to optimize feature selection are shown. We have given a review showcasing the NIA application for selecting feature subsets from the available features in the domain of medical applications. The paper reviews and analyzes numerous relevant papers from 2008 to 2022 on feature selection through NIA on biomedical applications. Moreover, to find the best optimization algorithm for feature selection, we have conducted experiments among four well-known nature-inspired algorithms on ten benchmark datasets of the biomedical domain for classification. We have reported results on various state-of-the-art evaluation measures and presented the convergence graphs for analysis. Based on the average rank of fitness values, Particle Swarm Optimization is found to be better than Harris Hawk Optimization, Grey Wolf Optimization, and Whale Optimization. In this paper, we have also presented some open challenges of this research area to guide researchers as well as experts of computational intelligence for future work. The paper will help future researchers understand the use and implementation of nature-inspired algorithms for feature selection in the medical domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Zamani H, Nadimi-Shahraki M-H (2016) Feature selection based on whale optimization algorithm for diseases diagnosis. Int J Comput Sci Inf Secur 14:1243–1247 Zamani H, Nadimi-Shahraki M-H (2016) Feature selection based on whale optimization algorithm for diseases diagnosis. Int J Comput Sci Inf Secur 14:1243–1247
8.
go back to reference Shi DLO (2006) Introduction to business data mining Shi DLO (2006) Introduction to business data mining
10.
go back to reference Yong S, Yingjie T, Gang K, Yi PJL (2011) Optimization based data mining: theory and applications Yong S, Yingjie T, Gang K, Yi PJL (2011) Optimization based data mining: theory and applications
11.
go back to reference Yong S (2022) Advances in big data analytics Yong S (2022) Advances in big data analytics
17.
go back to reference Thakkar A, Lohiya R (2021) A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Springer, Netherlands Thakkar A, Lohiya R (2021) A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Springer, Netherlands
18.
go back to reference Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med. 112 Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med. 112
22.
go back to reference Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestnik/Electrotechnical Rev 80:116–122 Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestnik/Electrotechnical Rev 80:116–122
24.
go back to reference Holland J.H. (1984) Genetic Algorithms and Adaptation. In: Selfridge O.G., Rissland E.L., Arbib M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO Conf Ser (II Syst Sci 16:317–333 Holland J.H. (1984) Genetic Algorithms and Adaptation. In: Selfridge O.G., Rissland E.L., Arbib M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO Conf Ser (II Syst Sci 16:317–333
104.
go back to reference Yang X-SS, Karamanoglu M (2013) Nature-Inspired Metaheuristic Algorithms Second Edition Yang X-SS, Karamanoglu M (2013) Nature-Inspired Metaheuristic Algorithms Second Edition
Metadata
Title
An Empirical Study of Nature-Inspired Algorithms for Feature Selection in Medical Applications
Authors
Varun Arora
Parul Agarwal
Publication date
14-08-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00571-y

Premium Partner