Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-07-2022

An Energy-Aware IoT Routing Approach Based on a Swarm Optimization Algorithm and a Clustering Technique

Authors: Mahyar Sadrishojaei, Nima Jafari Navimipour, Midia Reshadi, Mehdi Hosseinzadeh

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

The Internet of Things (IoT) comprises many nodes dispersed around a particular target region, and it has lately been applied in a variety of sectors such as smart cities, farming, climatology, smart metering, waste treatment, and others. Even though the IoT has tremendous potential, some difficulties must be addressed. When building the clustering and routing protocol for huge-scale IoT networks, uniform energy usage and optimization are two significant concerns. Clustering and routing are well-known NP-hard optimization challenges applied to the IoT. The ease with which chicken can be implemented has garnered much interest compared to other population-based metaheuristic algorithms in solving optimization problems in the IoT. Aiming to reduce and improve node energy consumption in the IoT network by choosing the most suitable cluster head, the current effort seeks to extend the life of a network by selecting the most appropriate cluster head. A new cost function for homogenous dispersion of cluster heads was proposed in this research, and a good balance among exploration and exploitation search skills to create a node clustering protocol based on chicken search. This procedure is a big step forward from previous state-of-the-art protocols. The number of packets received, the total power consumption, the number of active nodes, and the latency of the suggested integrated clustered routing protocol are all used to evaluate the protocol's overall performance. The proposed strategy has been demonstrated to improve power consumption by at least 16 percent.
Literature
2.
go back to reference Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., & Kim, S. W. (2020). Multimedia Internet of Things: A comprehensive survey. IEEE Access, 8, 8202–8250. CrossRef Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., & Kim, S. W. (2020). Multimedia Internet of Things: A comprehensive survey. IEEE Access, 8, 8202–8250. CrossRef
3.
go back to reference Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasubbareddy, S., Chilamkurti, N., & Nam, Y. (2019). Energy and delay aware data aggregation in routing protocol for Internet of Things. Sensors, 19(24), 5486. CrossRef Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasubbareddy, S., Chilamkurti, N., & Nam, Y. (2019). Energy and delay aware data aggregation in routing protocol for Internet of Things. Sensors, 19(24), 5486. CrossRef
4.
go back to reference Rahmani, A. M., Ali Naqvi, R., Hussain Malik, M., Malik, T. S., Sadrishojaei, M., Hosseinzadeh, M., & Al-Musawi, A. (2021). E-learning development based on Internet of Things and blockchain technology during COVID-19 pandemic. Mathematics, 9(24), 3151. CrossRef Rahmani, A. M., Ali Naqvi, R., Hussain Malik, M., Malik, T. S., Sadrishojaei, M., Hosseinzadeh, M., & Al-Musawi, A. (2021). E-learning development based on Internet of Things and blockchain technology during COVID-19 pandemic. Mathematics, 9(24), 3151. CrossRef
5.
go back to reference Sefati, S., & Navimipour, N. J. (2021). A QoS-aware service composition mechanism in the Internet of Things using a Hidden-Markov-model-based optimization algorithm. IEEE Internet of Things Journal, 8(20), 15620–15627. CrossRef Sefati, S., & Navimipour, N. J. (2021). A QoS-aware service composition mechanism in the Internet of Things using a Hidden-Markov-model-based optimization algorithm. IEEE Internet of Things Journal, 8(20), 15620–15627. CrossRef
6.
go back to reference Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 1–19 Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 1–19
7.
go back to reference Lombardi, M., Pascale, F., & Santaniello, D. (2021). Internet of things: A general overview between architectures, protocols and applications. Information, 12(2), 87. CrossRef Lombardi, M., Pascale, F., & Santaniello, D. (2021). Internet of things: A general overview between architectures, protocols and applications. Information, 12(2), 87. CrossRef
8.
go back to reference Yousefi, S., Derakhshan, F., Aghdasi, H. S., & Karimipour, H. (2020). An energy-efficient artificial bee colony-based clustering in the internet of things. Computers & Electrical Engineering, 86, 106733. CrossRef Yousefi, S., Derakhshan, F., Aghdasi, H. S., & Karimipour, H. (2020). An energy-efficient artificial bee colony-based clustering in the internet of things. Computers & Electrical Engineering, 86, 106733. CrossRef
9.
go back to reference Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A new preventive routing method based on clustering and location prediction in the mobile internet of things. IEEE Internet of Things Journal, 8(13), 10652–10664. CrossRef Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A new preventive routing method based on clustering and location prediction in the mobile internet of things. IEEE Internet of Things Journal, 8(13), 10652–10664. CrossRef
10.
go back to reference Liang, H., Liu, G., Gao, J., & Khan, M. J. (2020). Overflow remote warning using improved fuzzy c-means clustering in IoT monitoring system based on multi-access edge computing. Neural Computing and Applications, 32(19), 15399–15410. CrossRef Liang, H., Liu, G., Gao, J., & Khan, M. J. (2020). Overflow remote warning using improved fuzzy c-means clustering in IoT monitoring system based on multi-access edge computing. Neural Computing and Applications, 32(19), 15399–15410. CrossRef
11.
go back to reference Hamidouche, R., Aliouat, Z., Ari, A. A. A., & Gueroui, M. (2019). An efficient clustering strategy avoiding buffer overflow in IoT sensors: A bio-inspired based approach. IEEE Access, 7, 156733–156751. CrossRef Hamidouche, R., Aliouat, Z., Ari, A. A. A., & Gueroui, M. (2019). An efficient clustering strategy avoiding buffer overflow in IoT sensors: A bio-inspired based approach. IEEE Access, 7, 156733–156751. CrossRef
12.
go back to reference Sindhuja, M., & Selvamani, K. (2019). Cluster head selection framework for risk awareness enabled IoT networks using ant lion optimisation approach. Wireless Personal Communications, 107(1), 1–21. CrossRef Sindhuja, M., & Selvamani, K. (2019). Cluster head selection framework for risk awareness enabled IoT networks using ant lion optimisation approach. Wireless Personal Communications, 107(1), 1–21. CrossRef
13.
go back to reference Chen, Z., Long, X., Chen, L., Wu, Y., Wu, J., & Liu, S. (2021). Intra‐cluster aggregation aware routing for distributed training in wireless sensor networks. Concurrency and Computation: Practice and Experience, e6795. Chen, Z., Long, X., Chen, L., Wu, Y., Wu, J., & Liu, S. (2021). Intra‐cluster aggregation aware routing for distributed training in wireless sensor networks. Concurrency and Computation: Practice and Experience, e6795.
14.
go back to reference Choudhury, N., Matam, R., Mukherjee, M., Lloret, J., & Kalaimannan, E. (2020). NCHR: A non-threshold-based cluster-head ROTATION SCHEMe for IEEE 802.15. 4 Cluster-tree networks. IEEE Internet of Things Journal. Choudhury, N., Matam, R., Mukherjee, M., Lloret, J., & Kalaimannan, E. (2020). NCHR: A non-threshold-based cluster-head ROTATION SCHEMe for IEEE 802.15. 4 Cluster-tree networks. IEEE Internet of Things Journal.
15.
go back to reference Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Cluster Computing, 1–11. Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Cluster Computing, 1–11.
16.
go back to reference Sadrishojaei, M., Jafari Navimipour, N., Reshadi, M., Hosseinzadeh, M., & Unal, M. (2022). An energy-aware clustering method in the IoT using a swarm-based algorithm. Wireless Networks, 28(1), 125–136. CrossRef Sadrishojaei, M., Jafari Navimipour, N., Reshadi, M., Hosseinzadeh, M., & Unal, M. (2022). An energy-aware clustering method in the IoT using a swarm-based algorithm. Wireless Networks, 28(1), 125–136. CrossRef
17.
go back to reference Deb, S., & Gao, X.-Z. (2021). A hybrid ant lion optimization chicken swarm optimization algorithm for charger placement problem. Complex & Intelligent Systems, 1–18. Deb, S., & Gao, X.-Z. (2021). A hybrid ant lion optimization chicken swarm optimization algorithm for charger placement problem. Complex & Intelligent Systems, 1–18.
18.
go back to reference Wang, J., Cheng, Z., Ersoy, O. K., Zhang, M., Sun, K., & Bi, Y. (2019). Improvement and application of chicken swarm optimization for constrained optimization. IEEE Access, 7, 58053–58072. CrossRef Wang, J., Cheng, Z., Ersoy, O. K., Zhang, M., Sun, K., & Bi, Y. (2019). Improvement and application of chicken swarm optimization for constrained optimization. IEEE Access, 7, 58053–58072. CrossRef
19.
go back to reference Zouache, D., Arby, Y. O., Nouioua, F., & Abdelaziz, F. B. (2019). Multi-objective chicken swarm optimization: a novel algorithm for solving multi-objective optimization problems. Computers & Industrial Engineering, 129, 377–391. CrossRef Zouache, D., Arby, Y. O., Nouioua, F., & Abdelaziz, F. B. (2019). Multi-objective chicken swarm optimization: a novel algorithm for solving multi-objective optimization problems. Computers & Industrial Engineering, 129, 377–391. CrossRef
20.
go back to reference Deb, S., Gao, X. Z., Tammi, K., Kalita, K., & Mahanta, P. (2020). A new teaching–learning-based chicken swarm optimization algorithm. Soft Computing, 24(7), 5313–5331. CrossRef Deb, S., Gao, X. Z., Tammi, K., Kalita, K., & Mahanta, P. (2020). A new teaching–learning-based chicken swarm optimization algorithm. Soft Computing, 24(7), 5313–5331. CrossRef
21.
go back to reference Saxena, S., & Mehta, D. (2021). An adaptive fuzzy-based clustering and bio-inspired energy efficient hierarchical routing protocol for wireless sensor networks. Wireless Personal Communications, 1–20. Saxena, S., & Mehta, D. (2021). An adaptive fuzzy-based clustering and bio-inspired energy efficient hierarchical routing protocol for wireless sensor networks. Wireless Personal Communications, 1–20.
22.
go back to reference Kumar, J. S., & Zaveri, M. A. (2016). Hierarchical clustering for dynamic and heterogeneous internet of things. Procedia Computer Science, 93, 276–282. CrossRef Kumar, J. S., & Zaveri, M. A. (2016). Hierarchical clustering for dynamic and heterogeneous internet of things. Procedia Computer Science, 93, 276–282. CrossRef
23.
go back to reference Xiuwu, Y., Ying, L., Yong, L., & Hao, Y. (2022). WSN Clustering routing algorithm based on hybrid genetic tabu search. Wireless Personal Communications, 1–22. Xiuwu, Y., Ying, L., Yong, L., & Hao, Y. (2022). WSN Clustering routing algorithm based on hybrid genetic tabu search. Wireless Personal Communications, 1–22.
24.
go back to reference Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computing, 22(1), 1361–1372. CrossRef Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computing, 22(1), 1361–1372. CrossRef
25.
go back to reference Janakiraman, S. (2018). A hybrid ant colony and artificial bee colony optimization algorithm-based cluster head selection for IoT. Procedia computer science, 143, 360–366. CrossRef Janakiraman, S. (2018). A hybrid ant colony and artificial bee colony optimization algorithm-based cluster head selection for IoT. Procedia computer science, 143, 360–366. CrossRef
26.
go back to reference Sankar, S., Ramasubbareddy, S., Chen, F., & Gandomi, A. H. (2020). Energy-efficient cluster-based routing protocol in internet of things using swarm intelligence. In 2020 IEEE symposium series on computational intelligence (SSCI). IEEE. Sankar, S., Ramasubbareddy, S., Chen, F., & Gandomi, A. H. (2020). Energy-efficient cluster-based routing protocol in internet of things using swarm intelligence. In 2020 IEEE symposium series on computational intelligence (SSCI). IEEE.
27.
go back to reference Ahmad, M., Ikram, A. A., Wahid, I., Ullah, F., Ahmad, A., & Alam Khan, F. (2020). Optimized clustering in vehicular ad hoc networks based on honey bee and genetic algorithm for internet of things. Peer-to-Peer Networking and Applications, 13(2), 532–547. CrossRef Ahmad, M., Ikram, A. A., Wahid, I., Ullah, F., Ahmad, A., & Alam Khan, F. (2020). Optimized clustering in vehicular ad hoc networks based on honey bee and genetic algorithm for internet of things. Peer-to-Peer Networking and Applications, 13(2), 532–547. CrossRef
28.
go back to reference Saini, T. K., & Sharma, S. (2019). Self-managed access scheme for demand request in TDM/TDMA star topology network. Defence Science Journal, 69(1). Saini, T. K., & Sharma, S. (2019). Self-managed access scheme for demand request in TDM/TDMA star topology network. Defence Science Journal, 69(1).
29.
go back to reference Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014). A new bio-inspired algorithm: chicken swarm optimization. In International conference in swarm intelligence. Springer. Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014). A new bio-inspired algorithm: chicken swarm optimization. In International conference in swarm intelligence. Springer.
30.
go back to reference Osamy, W., El-Sawy, A. A., & Salim, A. (2020). CSOCA: Chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access, 8, 60676–60688. CrossRef Osamy, W., El-Sawy, A. A., & Salim, A. (2020). CSOCA: Chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access, 8, 60676–60688. CrossRef
31.
go back to reference Deb, S., Gao, X. Z., Tammi, K., Kalita, K., & Mahanta, P. (2020). Recent studies on chicken swarm optimization algorithm: A review (2014–2018). Artificial Intelligence Review, 53(3), 1737–1765. CrossRef Deb, S., Gao, X. Z., Tammi, K., Kalita, K., & Mahanta, P. (2020). Recent studies on chicken swarm optimization algorithm: A review (2014–2018). Artificial Intelligence Review, 53(3), 1737–1765. CrossRef
32.
go back to reference Yu, X., Zhou, L., & Li, X. (2019). A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization. Computer Networks, 154, 73–78. CrossRef Yu, X., Zhou, L., & Li, X. (2019). A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization. Computer Networks, 154, 73–78. CrossRef
33.
go back to reference Fouad, M. M., Hafez, A. I., & Hassanien, A. E. (2019). Optimizing topologies in wireless sensor networks: A comparative analysis between the Grey Wolves and the Chicken Swarm Optimization algorithms. Computer Networks, 163, 106882. CrossRef Fouad, M. M., Hafez, A. I., & Hassanien, A. E. (2019). Optimizing topologies in wireless sensor networks: A comparative analysis between the Grey Wolves and the Chicken Swarm Optimization algorithms. Computer Networks, 163, 106882. CrossRef
34.
go back to reference Al Shayokh, M., & Shin, S. Y. (2017). Bio inspired distributed WSN localization based on chicken swarm optimization. Wireless Personal Communications, 97(4), 5691–5706. CrossRef Al Shayokh, M., & Shin, S. Y. (2017). Bio inspired distributed WSN localization based on chicken swarm optimization. Wireless Personal Communications, 97(4), 5691–5706. CrossRef
35.
go back to reference Rao, P. S., & Banka, H. (2017). Energy efficient clustering algorithms for wireless sensor networks: Novel chemical reaction optimization approach. Wireless Networks, 23(2), 433–452. CrossRef Rao, P. S., & Banka, H. (2017). Energy efficient clustering algorithms for wireless sensor networks: Novel chemical reaction optimization approach. Wireless Networks, 23(2), 433–452. CrossRef
36.
go back to reference Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005–2020. CrossRef Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005–2020. CrossRef
37.
go back to reference Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. Modeling and tools for network simulation (pp. 15–34). Springer. CrossRef Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. Modeling and tools for network simulation (pp. 15–34). Springer. CrossRef
38.
go back to reference Carneiro, G. (2010). NS-3: Network simulator 3. In UTM Lab Meeting April. 2010. Carneiro, G. (2010). NS-3: Network simulator 3. In UTM Lab Meeting April. 2010.
Metadata
Title
An Energy-Aware IoT Routing Approach Based on a Swarm Optimization Algorithm and a Clustering Technique
Authors
Mahyar Sadrishojaei
Nima Jafari Navimipour
Midia Reshadi
Mehdi Hosseinzadeh
Publication date
28-07-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09927-0