Skip to main content
Top

2018 | OriginalPaper | Chapter

10. An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations

Authors : Xinyuan Wu, Bin Wang

Published in: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we derive and analyse an energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations, which can exactly preserve the energy of the underlying Hamiltonian wave equations. To this end, we first define and discuss the bounded operator-argument functions on the underlying domain. We then introduce an operator-variation-of-constants formula, based on which we present an energy-preserving scheme for nonlinear Hamiltonian wave equations. The scheme preserves the energy of the original continuous Hamiltonian system exactly. In comparison with the existing work on this topic, such as the well-known Average Vector Field (AVF) formula for Hamiltonian ordinary differential equations, the energy-preserving scheme avoids the semi-discretisation of spatial derivatives and exactly preserves the Hamiltonian of the original continuous Hamiltonian wave equation. This point is very significant in comparison with the AVF formula, since the AVF formula can preserve only the energy of Hamiltonian ordinary differential equations. Hence, the main theme of this chapter is to establish a scheme which can exactly preserve the energy of the nonlinear Hamiltonian wave equation. The chapter is also accompanied by some examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berti, M.: Nonlinear Oscillations of Hamiltonian PDEs. Springer, Berlin (2007)MATH Berti, M.: Nonlinear Oscillations of Hamiltonian PDEs. Springer, Berlin (2007)MATH
2.
go back to reference Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRef Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRef
3.
go back to reference Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method. J. Comput. Phys. 231(20), 6770–6789 (2012)MathSciNetCrossRef Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method. J. Comput. Phys. 231(20), 6770–6789 (2012)MathSciNetCrossRef
4.
go back to reference Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006) Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)
5.
go back to reference Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Annal. 100, 32–74 (1928); reprinted and translated. IBM J. Res. Dev. 11, 215–234 (1967) Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Annal. 100, 32–74 (1928); reprinted and translated. IBM J. Res. Dev. 11, 215–234 (1967)
6.
go back to reference Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRef Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRef
7.
go back to reference Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)CrossRef Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)CrossRef
8.
go back to reference Dehghan, M., Shokri, A.: Numerical solution of the nonlinear KleinCGordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)MathSciNetCrossRef Dehghan, M., Shokri, A.: Numerical solution of the nonlinear KleinCGordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)MathSciNetCrossRef
9.
go back to reference Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH
10.
go back to reference Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and Condensed Matter Physics, pp. 28–43. Springer, New York (1978)CrossRef Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and Condensed Matter Physics, pp. 28–43. Springer, New York (1978)CrossRef
11.
go back to reference Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press (1990) Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press (1990)
12.
13.
go back to reference García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef
14.
go back to reference Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRef Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRef
15.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)MATH
16.
go back to reference Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403-426 (1999)MathSciNetCrossRef Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403-426 (1999)MathSciNetCrossRef
18.
go back to reference Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, New York (1990)MATH Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, New York (1990)MATH
19.
go back to reference Liu, K., Wu, X.Y.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A: Math. Theor. 46(165203), 19 (2013)MathSciNetCrossRef Liu, K., Wu, X.Y.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A: Math. Theor. 46(165203), 19 (2013)MathSciNetCrossRef
20.
go back to reference Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)MathSciNetCrossRef Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)MathSciNetCrossRef
21.
go back to reference Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)MathSciNetCrossRef Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)MathSciNetCrossRef
22.
go back to reference Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)MathSciNetCrossRef Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)MathSciNetCrossRef
23.
go back to reference McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRef McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRef
24.
go back to reference Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41(045206), 7 (2008)MathSciNetCrossRef Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41(045206), 7 (2008)MathSciNetCrossRef
25.
go back to reference Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily structured C-grids. J. Comput. Phys. 229, 3065–3090 (2010)MathSciNetCrossRef Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily structured C-grids. J. Comput. Phys. 229, 3065–3090 (2010)MathSciNetCrossRef
26.
go back to reference Schiesser, W.: The Numerical Methods Of Lines: Integration Of Partial Differential Equation. Academic Press, San Diego (1991)MATH Schiesser, W.: The Numerical Methods Of Lines: Integration Of Partial Differential Equation. Academic Press, San Diego (1991)MATH
27.
go back to reference Sevryuk, M. B., Lectures in Mathematics., 1211, Springer, Berlin (1986) Sevryuk, M. B., Lectures in Mathematics., 1211, Springer, Berlin (1986)
28.
go back to reference Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRef Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRef
29.
go back to reference Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)MathSciNetCrossRef Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)MathSciNetCrossRef
30.
go back to reference Taleei, A., Dehghan, M.: Time-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one and multi-dimensional nonlinear Schrödinger equations. Comput. Phys. Commun. 185, 1515–1528 (2014)MathSciNetCrossRef Taleei, A., Dehghan, M.: Time-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one and multi-dimensional nonlinear Schrödinger equations. Comput. Phys. Commun. 185, 1515–1528 (2014)MathSciNetCrossRef
31.
go back to reference Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetCrossRef Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetCrossRef
32.
go back to reference Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)MathSciNetCrossRef Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)MathSciNetCrossRef
33.
go back to reference Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)MathSciNetCrossRef Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)MathSciNetCrossRef
34.
go back to reference Wang, B., Iserles, A., Wu, X.Y.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRef Wang, B., Iserles, A., Wu, X.Y.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRef
35.
go back to reference Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRef Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRef
36.
go back to reference Wu, X.Y., Liu, C.: An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations. J. Math. Anal. Appl. 440, 167–182 (2016)MathSciNetCrossRef Wu, X.Y., Liu, C.: An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations. J. Math. Anal. Appl. 440, 167–182 (2016)MathSciNetCrossRef
37.
go back to reference Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)MathSciNetCrossRef Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)MathSciNetCrossRef
38.
go back to reference Wu, X.Y., Liu, C., Mei, L.J.: A new framework for solving partial differential equations using semi-analytical explicit RK(N)-type integrators. J. Comput. Appl. Math. 301, 74–90 (2016)MathSciNetCrossRef Wu, X.Y., Liu, C., Mei, L.J.: A new framework for solving partial differential equations using semi-analytical explicit RK(N)-type integrators. J. Comput. Appl. Math. 301, 74–90 (2016)MathSciNetCrossRef
39.
go back to reference Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173 (2015)MathSciNetCrossRef Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173 (2015)MathSciNetCrossRef
40.
go back to reference Wu, X.Y., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRef Wu, X.Y., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRef
41.
go back to reference Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)MathSciNetCrossRef Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)MathSciNetCrossRef
42.
go back to reference Wu, X.Y., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nystrom methods. BIT Numer. Math. 52, 773–795 (2012)MathSciNetCrossRef Wu, X.Y., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nystrom methods. BIT Numer. Math. 52, 773–795 (2012)MathSciNetCrossRef
43.
go back to reference Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)MathSciNetCrossRef Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)MathSciNetCrossRef
44.
go back to reference Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)CrossRef Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)CrossRef
Metadata
Title
An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations
Authors
Xinyuan Wu
Bin Wang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9004-2_10

Premium Partner