Skip to main content
Top

2025 | OriginalPaper | Chapter

An Enhanced Keylogger Detection Systems Using Recurrent Neural Networks Enabled with Feature Selection Model

Authors : Joseph Bamidele Awotunde, Samarendra Nath Sur, Agbotiname Lucky Imoize, Demóstenes Zegarra Rodríguez, Boluwatife Akanji

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Keyloggers are malicious software programs that record keystrokes of users without their consent or knowledge. They can steal sensitive information like credit card numbers and passwords. They pose a significant threat to users’ privacy and security since they capture keystroke data. Keylogger detection systems play a vital role in safeguarding users from cyberattacks and mitigating the potential harm caused by keyloggers. Keylogger detection systems employing deep learning have been widely used for identifying and mitigating cyber threats associated with keyloggers. However, they struggle to identify new or unfamiliar keylogger samples. This study aims to explore deep learning techniques with feature selection model to detect keylogger. This study employs Recurrent Neural Networks (RNNs) using a collection of known keylogger dataset. Furthermore, a correlation-based feature extraction method was applied to identify the most relevant features for the model, highlighting the importance of specific features, such as URG flag Count, ACK flag count, and Idle Mean, in differentiating between benign and keylog classes. The proposed model demonstrates superior accuracy of 0.8763 and precision of 0.8569 compared to a baseline model using Logistic Regression (LR) 0.7721 and 0.7407, respectively, indicating a better balance between accurate classification and minimizing false negatives and false positives. The findings from this study help to improve keylogger detection methods, making them more powerful and efficient. These results suggest that a keylogger-based detection system employing a deep learning approach can be a valuable tool for addressing the complex and evolving landscape of cyber threats related to keylogging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sabu J, Ananthanarayanan S, Gopan A, Gowtham S, Murali S (2023) Advanced keylogger with keystroke dynamics. In: 2023 international conference on inventive computation technologies (ICICT), Apr 2023. IEEE, pp 1598–1603 Sabu J, Ananthanarayanan S, Gopan A, Gowtham S, Murali S (2023) Advanced keylogger with keystroke dynamics. In: 2023 international conference on inventive computation technologies (ICICT), Apr 2023. IEEE, pp 1598–1603
2.
go back to reference Mijwil M, Aljanabi M (2023) Towards artificial intelligence-based cybersecurity: the practices and ChatGPT generated ways to combat cybercrime. Iraqi J Comput Sci Math 4(1):65–70 Mijwil M, Aljanabi M (2023) Towards artificial intelligence-based cybersecurity: the practices and ChatGPT generated ways to combat cybercrime. Iraqi J Comput Sci Math 4(1):65–70
3.
go back to reference Singh A, Choudhary P (2021) Keylogger detection and prevention. J Phys Conf Ser 2007(1):012005. IOP Publishing Singh A, Choudhary P (2021) Keylogger detection and prevention. J Phys Conf Ser 2007(1):012005. IOP Publishing
4.
go back to reference Solairaj A, Prabanand SC, Mathalairaj J, Prathap C, Vignesh LS (2016) Keyloggers software detection techniques. In: 2016 10th international conference on intelligent systems and control (ISCO), Jan 2016. IEEE, pp 1–6 Solairaj A, Prabanand SC, Mathalairaj J, Prathap C, Vignesh LS (2016) Keyloggers software detection techniques. In: 2016 10th international conference on intelligent systems and control (ISCO), Jan 2016. IEEE, pp 1–6
5.
go back to reference EyalSalman RT (2023) Android stalkerware detection techniques: a survey study. In: 2023 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), May 2023. IEEE, pp 270–275 EyalSalman RT (2023) Android stalkerware detection techniques: a survey study. In: 2023 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), May 2023. IEEE, pp 270–275
6.
go back to reference Ruhani ABB, Zolkipli MF (2023) Keylogger: the unsung hacking weapon. Borneo Int J 6(1):33–43. eISSN 2636-9826 Ruhani ABB, Zolkipli MF (2023) Keylogger: the unsung hacking weapon. Borneo Int J 6(1):33–43. eISSN 2636-9826
7.
go back to reference Alahmadi AA, Aljabri M, Alhaidari F, Alharthi DJ, Rayani GE, Marghalani LA et al (2023) DDoS attack detection in IoT-based networks using machine learning models: a survey and research directions. Electronics 12(14):3103CrossRef Alahmadi AA, Aljabri M, Alhaidari F, Alharthi DJ, Rayani GE, Marghalani LA et al (2023) DDoS attack detection in IoT-based networks using machine learning models: a survey and research directions. Electronics 12(14):3103CrossRef
8.
go back to reference Gopinath M, Sethuraman SC (2023) A comprehensive survey on deep learning based malware detection techniques. Comput Sci Rev 47:100529CrossRef Gopinath M, Sethuraman SC (2023) A comprehensive survey on deep learning based malware detection techniques. Comput Sci Rev 47:100529CrossRef
9.
go back to reference Bhardwaj A, Goundar S (2020) Keyloggers: silent cyber security weapons. Netw Secur 2020(2):14–19CrossRef Bhardwaj A, Goundar S (2020) Keyloggers: silent cyber security weapons. Netw Secur 2020(2):14–19CrossRef
10.
go back to reference AbdulRaheem M, Oladipo ID, Imoize AL, Awotunde JB, Lee CC, Balogun GB, Adeoti JO (2023) Machine learning assisted snort and zeek in detecting DDoS attacks in software-defined networking. Int J Inf Technol 1–17 AbdulRaheem M, Oladipo ID, Imoize AL, Awotunde JB, Lee CC, Balogun GB, Adeoti JO (2023) Machine learning assisted snort and zeek in detecting DDoS attacks in software-defined networking. Int J Inf Technol 1–17
11.
go back to reference Awotunde JB, Oguns YJ, Amuda KA, Nigar N, Adeleke TA, Olagunju KM, Ajagbe SA (2023) Cyber-physical systems security: analysis, opportunities, challenges, and future prospects. In: Blockchain for cybersecurity in cyber-physical systems, pp 21–46 Awotunde JB, Oguns YJ, Amuda KA, Nigar N, Adeleke TA, Olagunju KM, Ajagbe SA (2023) Cyber-physical systems security: analysis, opportunities, challenges, and future prospects. In: Blockchain for cybersecurity in cyber-physical systems, pp 21–46
12.
go back to reference Menghani G (2023) Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput Surv 55(12):1–37CrossRef Menghani G (2023) Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput Surv 55(12):1–37CrossRef
13.
go back to reference Ayo FE, Awotunde JB, Misra S, Ajagbe SA, Mishra N (2022) A rule-based deep learning method for predicting price of used cars. In: International conference on machine intelligence and signal processing, Mar 2022. Springer Nature Singapore, Singapore, pp 845–857 Ayo FE, Awotunde JB, Misra S, Ajagbe SA, Mishra N (2022) A rule-based deep learning method for predicting price of used cars. In: International conference on machine intelligence and signal processing, Mar 2022. Springer Nature Singapore, Singapore, pp 845–857
14.
go back to reference Alghamdi SM, Othathi ES, Alsulami BS (2022) Detect keyloggers by using machine learning. In: 2022 fifth national conference of Saudi computers colleges (NCCC), Dec 2022. IEEE, pp 193–200 Alghamdi SM, Othathi ES, Alsulami BS (2022) Detect keyloggers by using machine learning. In: 2022 fifth national conference of Saudi computers colleges (NCCC), Dec 2022. IEEE, pp 193–200
15.
go back to reference Rai S, Choubey V, Garg P (2022) A systematic review of encryption and keylogging for computer system security. In: 2022 fifth international conference on computational intelligence and communication technologies (CCICT), July 2022. IEEE, pp 157–163 Rai S, Choubey V, Garg P (2022) A systematic review of encryption and keylogging for computer system security. In: 2022 fifth international conference on computational intelligence and communication technologies (CCICT), July 2022. IEEE, pp 157–163
16.
go back to reference Darus MY, Ariffin MAM (2022) Enhancement keylogger application for parental control and monitor children’s activities. J Posit Sch Psychol 6(3):8482–8492 Darus MY, Ariffin MAM (2022) Enhancement keylogger application for parental control and monitor children’s activities. J Posit Sch Psychol 6(3):8482–8492
17.
go back to reference Tang M, Alazab M, Luo Y (2017) Big data for cybersecurity: vulnerability disclosure trends and dependencies. IEEE Trans Big Data 5(3):317–329CrossRef Tang M, Alazab M, Luo Y (2017) Big data for cybersecurity: vulnerability disclosure trends and dependencies. IEEE Trans Big Data 5(3):317–329CrossRef
18.
go back to reference Jimoh RG, Imoize AL, Awotunde JB, Ojo S, Akanbi MB, Bamigbaye JA, Faruk N (2022) An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks. In: 2022 5th information technology for education and development (ITED), Nov 2022. IEEE, pp 1–5 Jimoh RG, Imoize AL, Awotunde JB, Ojo S, Akanbi MB, Bamigbaye JA, Faruk N (2022) An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks. In: 2022 5th information technology for education and development (ITED), Nov 2022. IEEE, pp 1–5
19.
go back to reference Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41 Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41
20.
go back to reference Awotunde JB, Gaber T, Prasad LN, Folorunso SO, Lalitha VL (2023) Privacy and security enhancement of smart cities using hybrid deep learning-enabled blockchain. Scalable Comput Pract Exp 24(3):561–584CrossRef Awotunde JB, Gaber T, Prasad LN, Folorunso SO, Lalitha VL (2023) Privacy and security enhancement of smart cities using hybrid deep learning-enabled blockchain. Scalable Comput Pract Exp 24(3):561–584CrossRef
Metadata
Title
An Enhanced Keylogger Detection Systems Using Recurrent Neural Networks Enabled with Feature Selection Model
Authors
Joseph Bamidele Awotunde
Samarendra Nath Sur
Agbotiname Lucky Imoize
Demóstenes Zegarra Rodríguez
Boluwatife Akanji
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_42