Skip to main content
Top

2025 | OriginalPaper | Chapter

An Enhanced Product Recommendation System Using Decision Tree Algorithm

Authors : Joseph Bamidele Awotunde, Samarendra Nath Sur, Agbotiname Lucky Imoize, Oluwatimilehin Moses Akinyoola

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Product recommendation systems are a critical element of e-commerce platforms, as they enable customers to identify the items that best meet their needs. Product recommendation systems are important tools used by organizations to increase customer engagement, satisfaction, and loyalty. Existing product recommendation systems have several weaknesses, such as an inability to incorporate features outside of customer preferences. Therefore, this paper proposes an enhanced product recommendation system using a decision tree algorithm. The main objectives of this system are to improve the accuracy and efficiency of the existing product recommendation systems. To accomplish this, a framework includes a data preprocessing phase, a feature selection phase, and a model training phase. The data preprocessing phase is used to clean the data and eliminate any noise. The feature selection phase is used to identify the most informative features, which are then used to train the decision tree model. The model is trained using CART, a supervised learning algorithm, and is evaluated using various metrics such as accuracy, precision, recall, and F1-score. Finally, the model is tested on a test dataset to compare with existing solutions. The results show that the proposed system outperforms existing recommender systems in terms of all the evaluation metrics discussed. Furthermore, the improved system also provides useful insights into the product recommendation process for future studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Katarya R, Arora Y (2020) Capsmf: a novel product recommender system using a deep learning based text analysis model. Multimed Tools Appl 79(47–48):35927–35948CrossRef Katarya R, Arora Y (2020) Capsmf: a novel product recommender system using a deep learning based text analysis model. Multimed Tools Appl 79(47–48):35927–35948CrossRef
2.
go back to reference Loukili M, Messaoudi F, El Ghazi M (2023) Machine learning based recommender system for E-commerce. IAES Int J Artif Intell 12(4):1803–1811 Loukili M, Messaoudi F, El Ghazi M (2023) Machine learning based recommender system for E-commerce. IAES Int J Artif Intell 12(4):1803–1811
3.
go back to reference Bouabdallaoui I, Guerouate F, Sbihi M (2023) Combination of genetic algorithms and K-means for a hybrid topic modeling: tourism use case. Evol Intell 1–17 Bouabdallaoui I, Guerouate F, Sbihi M (2023) Combination of genetic algorithms and K-means for a hybrid topic modeling: tourism use case. Evol Intell 1–17
4.
go back to reference Abiodun KM, Adeniyi EA, Aremu DR, Awotunde JB, Ogbuji E (2021) Predicting students performance in examination using supervised data mining techniques. In: International conference on informatics and intelligent applications, Nov 2021. Springer International Publishing, Cham, pp 63–77 Abiodun KM, Adeniyi EA, Aremu DR, Awotunde JB, Ogbuji E (2021) Predicting students performance in examination using supervised data mining techniques. In: International conference on informatics and intelligent applications, Nov 2021. Springer International Publishing, Cham, pp 63–77
5.
go back to reference Tran DT, Huh JH (2023) New machine learning model based on the time factor for e-commerce recommendation systems. J Supercomput 79(6):6756–6801CrossRef Tran DT, Huh JH (2023) New machine learning model based on the time factor for e-commerce recommendation systems. J Supercomput 79(6):6756–6801CrossRef
6.
go back to reference Awotunde JB, Misra S, Katta V, Adebayo OC (2023) An ensemble-based hotel reviews system using naive Bayes classifier. CMES-Comput Model Eng Sci 137(1) Awotunde JB, Misra S, Katta V, Adebayo OC (2023) An ensemble-based hotel reviews system using naive Bayes classifier. CMES-Comput Model Eng Sci 137(1)
7.
go back to reference Choudhary C, Singh I, Kumar M (2023) SARWAS: deep ensemble learning techniques for sentiment based recommendation system. Expert Syst Appl 216:119420CrossRef Choudhary C, Singh I, Kumar M (2023) SARWAS: deep ensemble learning techniques for sentiment based recommendation system. Expert Syst Appl 216:119420CrossRef
8.
go back to reference Folorunso SO, Awotunde JB, Adigun AA, Panigrahi R, Garg A, Bhoi AK (2023) Multi-label learning model for diabetes disease comorbidity. J Inst Eng (India) Ser B 1–13 Folorunso SO, Awotunde JB, Adigun AA, Panigrahi R, Garg A, Bhoi AK (2023) Multi-label learning model for diabetes disease comorbidity. J Inst Eng (India) Ser B 1–13
9.
go back to reference Ferrari Dacrema M, Cremonesi P, Jannach D (2019) Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM conference on recommender systems, Sept 2019, pp 101–109 Ferrari Dacrema M, Cremonesi P, Jannach D (2019) Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM conference on recommender systems, Sept 2019, pp 101–109
10.
go back to reference Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: 2008 eighth IEEE international conference on data mining, Dec 2008. IEEE, pp 263–272 Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: 2008 eighth IEEE international conference on data mining, Dec 2008. IEEE, pp 263–272
12.
go back to reference Ayo FE, Awotunde JB, Olalekan OA, Imoize AL, Li CT, Lee CC (2023) CBFISKD: a combinatorial-based fuzzy inference system for keylogger detection. Mathematics 11(8):1899CrossRef Ayo FE, Awotunde JB, Olalekan OA, Imoize AL, Li CT, Lee CC (2023) CBFISKD: a combinatorial-based fuzzy inference system for keylogger detection. Mathematics 11(8):1899CrossRef
13.
go back to reference Awotunde JB, Sur NS, Imoize AL, Misra S, Gaber T (2022) An enhanced residual networks based framework for early Alzheimer’s disease classification and diagnosis. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 335–348 Awotunde JB, Sur NS, Imoize AL, Misra S, Gaber T (2022) An enhanced residual networks based framework for early Alzheimer’s disease classification and diagnosis. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 335–348
14.
go back to reference Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41 Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41
16.
go back to reference Dudekula KV, Syed H, Basha MIM, Swamykan SI, Kasaraneni PP, Kumar YVP et al (2023) Convolutional neural network-based personalized program recommendation system for smart television users. Sustainability 15(3):2206CrossRef Dudekula KV, Syed H, Basha MIM, Swamykan SI, Kasaraneni PP, Kumar YVP et al (2023) Convolutional neural network-based personalized program recommendation system for smart television users. Sustainability 15(3):2206CrossRef
20.
go back to reference Jäger S, Greene J, Jakob M, Korenke R, Santarius T, Biessmann F (2022) GreenDB: toward a product-by-product sustainability database. arXiv preprint arXiv:2205.02908 Jäger S, Greene J, Jakob M, Korenke R, Santarius T, Biessmann F (2022) GreenDB: toward a product-by-product sustainability database. arXiv preprint arXiv:​2205.​02908
21.
go back to reference Li Y, Ge Y, Zhang Y (2021) Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, July 2021, pp 2654–2657 Li Y, Ge Y, Zhang Y (2021) Tutorial on fairness of machine learning in recommender systems. In: Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, July 2021, pp 2654–2657
22.
go back to reference Kang WC, Cheng DZ, Chen T, Yi X, Lin D, Hong L, Chi EH (2020) Learning multi-granular quantized embeddings for large-vocab categorical features in recommender systems. In: Companion proceedings of the web conference 2020, Apr 2020, pp 562–566 Kang WC, Cheng DZ, Chen T, Yi X, Lin D, Hong L, Chi EH (2020) Learning multi-granular quantized embeddings for large-vocab categorical features in recommender systems. In: Companion proceedings of the web conference 2020, Apr 2020, pp 562–566
23.
go back to reference Cai X, Hu Z, Zhao P, Zhang W, Chen J (2020) A hybrid recommendation system with many-objective evolutionary algorithm. Expert Syst Appl 159:113648CrossRef Cai X, Hu Z, Zhao P, Zhang W, Chen J (2020) A hybrid recommendation system with many-objective evolutionary algorithm. Expert Syst Appl 159:113648CrossRef
24.
go back to reference Ye Q, Hsieh CY, Yang Z, Kang Y, Chen J, Cao D et al (2021) A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun 12(1):6775CrossRef Ye Q, Hsieh CY, Yang Z, Kang Y, Chen J, Cao D et al (2021) A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun 12(1):6775CrossRef
25.
go back to reference Jannach D, Manzoor A, Cai W, Chen L (2021) A survey on conversational recommender systems. ACM Comput Surv (CSUR) 54(5):1–36 Jannach D, Manzoor A, Cai W, Chen L (2021) A survey on conversational recommender systems. ACM Comput Surv (CSUR) 54(5):1–36
26.
go back to reference Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comput Sci 14:430–450CrossRef Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comput Sci 14:430–450CrossRef
27.
go back to reference Sedhain S, Menon AK, Sanner S, Xie L (2015) AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on world wide web, May 2015, pp 111–112 Sedhain S, Menon AK, Sanner S, Xie L (2015) AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on world wide web, May 2015, pp 111–112
28.
go back to reference Guan Y, Wei Q, Chen G (2019) Deep learning based personalized recommendation with multi-view information integration. Decis Support Syst 118:58–69CrossRef Guan Y, Wei Q, Chen G (2019) Deep learning based personalized recommendation with multi-view information integration. Decis Support Syst 118:58–69CrossRef
Metadata
Title
An Enhanced Product Recommendation System Using Decision Tree Algorithm
Authors
Joseph Bamidele Awotunde
Samarendra Nath Sur
Agbotiname Lucky Imoize
Oluwatimilehin Moses Akinyoola
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_41