Skip to main content
Top
Published in: Journal of Scientific Computing 3/2016

08-02-2016

An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations

Authors: Hailiang Liu, Zhongming Wang

Published in: Journal of Scientific Computing | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a high order discontinuous Galerkin method for solving nonlinear Fokker–Planck equations with a gradient flow structure. For some of these models it is known that the transient solutions converge to steady-states when time tends to infinity. The scheme is shown to satisfy a discrete version of the entropy dissipation law and preserve steady-states, therefore providing numerical solutions with satisfying long-time behavior. The positivity of numerical solutions is enforced through a reconstruction algorithm, based on positive cell averages. For the model with trivial potential, a parameter range sufficient for positivity preservation is rigorously established. For other cases, cell averages can be made positive at each time step by tuning the numerical flux parameters. A selected set of numerical examples is presented to confirm both the high-order accuracy and the efficiency to capture the large-time asymptotic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdallah, N.B., Gamba, I.M., Toscani, G.: On the minimization problem of sub-linear convex functionals. Kinet. Relat. Models 4(4), 857–871 (2011)MathSciNetCrossRefMATH Abdallah, N.B., Gamba, I.M., Toscani, G.: On the minimization problem of sub-linear convex functionals. Kinet. Relat. Models 4(4), 857–871 (2011)MathSciNetCrossRefMATH
2.
go back to reference Arnold, A., Unterreiter, A.: Entropy decay of discretized Fokker–Planck equations I—temporal semidiscretization. Comput. Math. Appl. 46(10–11), 1683–1690 (2003)MathSciNetCrossRefMATH Arnold, A., Unterreiter, A.: Entropy decay of discretized Fokker–Planck equations I—temporal semidiscretization. Comput. Math. Appl. 46(10–11), 1683–1690 (2003)MathSciNetCrossRefMATH
3.
go back to reference Barenblatt, G.I.: On some unsteady fluid and gas motions in a porous medium. J. Appl. Math. Mech. 16(1), 67–78 (1952) Barenblatt, G.I.: On some unsteady fluid and gas motions in a porous medium. J. Appl. Math. Mech. 16(1), 67–78 (1952)
4.
go back to reference Burger, M., Carrillo, J.A., Wolfram, M.-T.: A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3, 59–83 (2010)MathSciNetCrossRefMATH Burger, M., Carrillo, J.A., Wolfram, M.-T.: A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3, 59–83 (2010)MathSciNetCrossRefMATH
5.
go back to reference Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)MathSciNetCrossRefMATH Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)MathSciNetCrossRefMATH
6.
go back to reference Carrillo, J., Chertock, A., Huang, Y.H.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17, 233–258 (2015)MathSciNetCrossRef Carrillo, J., Chertock, A., Huang, Y.H.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17, 233–258 (2015)MathSciNetCrossRef
7.
go back to reference Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82 (2001)MathSciNetCrossRefMATH Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82 (2001)MathSciNetCrossRefMATH
8.
go back to reference Carrillo, J.A., Laurençot, P., Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness & long-time asymptotics. J. Differ. Equ. 247(8), 2209–2234 (2009)MathSciNetCrossRefMATH Carrillo, J.A., Laurençot, P., Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness & long-time asymptotics. J. Differ. Equ. 247(8), 2209–2234 (2009)MathSciNetCrossRefMATH
9.
go back to reference Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)MathSciNetCrossRefMATH Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)MathSciNetCrossRefMATH
10.
go back to reference Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21(2), 148–154 (2008)MathSciNetCrossRefMATH Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21(2), 148–154 (2008)MathSciNetCrossRefMATH
11.
go back to reference Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)MathSciNetCrossRefMATH Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)MathSciNetCrossRefMATH
12.
go back to reference Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)MATH Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)MATH
13.
go back to reference Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)MathSciNetCrossRefMATH Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)MathSciNetCrossRefMATH
14.
go back to reference Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, London (2006) Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, London (2006)
15.
go back to reference Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comput. 84, 2263–2295 (2015)MathSciNetCrossRefMATH Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comput. 84, 2263–2295 (2015)MathSciNetCrossRefMATH
16.
go back to reference Liu, X., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Number. Anal. 33(2), 760–779 (1996)MathSciNetCrossRefMATH Liu, X., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Number. Anal. 33(2), 760–779 (1996)MathSciNetCrossRefMATH
17.
go back to reference Liu, H., Pollack, M.: Alternating evolution discontinuous Galerkin methods for convection-diffusion equations. J. Comput. Phys. 307, 574–592 (2016) Liu, H., Pollack, M.: Alternating evolution discontinuous Galerkin methods for convection-diffusion equations. J. Comput. Phys. 307, 574–592 (2016)
18.
go back to reference Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)MathSciNetCrossRef Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)MathSciNetCrossRef
19.
go back to reference Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)MathSciNetCrossRefMATH Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)MathSciNetCrossRefMATH
20.
go back to reference Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)MathSciNet Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)MathSciNet
21.
go back to reference Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model. SIAM J. Numer. Anal. 50, 1207–1239 (2012)MathSciNetCrossRefMATH Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model. SIAM J. Numer. Anal. 50, 1207–1239 (2012)MathSciNetCrossRefMATH
22.
go back to reference Liu, H., Yu, H.: The entropy satisfying dicontinuous Galerkin method for Fokker–Planck equations. J. Sci. Comput. 62, 803–830 (2015)MathSciNetCrossRefMATH Liu, H., Yu, H.: The entropy satisfying dicontinuous Galerkin method for Fokker–Planck equations. J. Sci. Comput. 62, 803–830 (2015)MathSciNetCrossRefMATH
23.
go back to reference Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker–Planck equations. SIAM J. Sci. Comput. 36(5), A2296–A2325 (2014)MathSciNetCrossRefMATH Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker–Planck equations. SIAM J. Sci. Comput. 36(5), A2296–A2325 (2014)MathSciNetCrossRefMATH
24.
go back to reference Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetCrossRefMATH Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetCrossRefMATH
25.
go back to reference Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12, 407–409 (1959)MathSciNetCrossRefMATH Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12, 407–409 (1959)MathSciNetCrossRefMATH
26.
go back to reference Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)CrossRefMATH Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)CrossRefMATH
27.
go back to reference Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability, in numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics, CRM Barcelona, p. 149201. Birkhaüser, Basel (2009) Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability, in numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics, CRM Barcelona, p. 149201. Birkhaüser, Basel (2009)
28.
go back to reference Toscani, G.: Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles. Comm. Partial Differ. Equ. 37(1), 77–87 (2012)MathSciNetCrossRefMATH Toscani, G.: Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles. Comm. Partial Differ. Equ. 37(1), 77–87 (2012)MathSciNetCrossRefMATH
29.
go back to reference Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)MathSciNetCrossRefMATH Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)MathSciNetCrossRefMATH
30.
go back to reference Zhang, X.-X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetCrossRefMATH Zhang, X.-X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetCrossRefMATH
Metadata
Title
An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations
Authors
Hailiang Liu
Zhongming Wang
Publication date
08-02-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0174-0

Other articles of this Issue 3/2016

Journal of Scientific Computing 3/2016 Go to the issue

Premium Partner