Skip to main content
Top
Published in:

12-08-2023

An Event-Triggered Method for Stabilization of Stochastic Quaternion-Valued Memristive Neural Networks

Authors: Ruoyu Wei, Jinde Cao, Sergey Gorbachev

Published in: Cognitive Computation | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stochastic disturbances are common in real world and usually cause significant influence to engineering system. In this work, the stochastic disturbance is introduced into the quaternion-valued memristive neural networks (QVMNNs). The exponential input-to-state stabilization (EITSS) problem of stochastic QVMNNs is investigated. In order to be more effective and less costly in real applications, an event-triggered control strategy is adopted. The original QVMNNs are separated into four equivalent real-valued NNs by using Hamilton rule. Then, by using the Lyapunov functional approach and stochastic analysis technique, novel sufficient conditions for mean square EITSS of stochastic QVMNNs are derived. Moreover, it is proved that Zeno behavior will not take place in our event-triggered control method. Thus, the mean square EITSS problem of stochastic QVMNNs is solved in this work with less control cost. Lastly, simulation is performed to manifest the correctness of the theorem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chua LO. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory. 1971;18(5):507–19.CrossRef Chua LO. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory. 1971;18(5):507–19.CrossRef
2.
go back to reference Strukov D, Snider G, Stewart D, Williams RS. The missing memristor found. Nature. 2008;453:80–3.CrossRef Strukov D, Snider G, Stewart D, Williams RS. The missing memristor found. Nature. 2008;453:80–3.CrossRef
3.
go back to reference Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S. Memristive behavior in thin anodic titania. IEEE Electron Device Lett. 2010;31(7):737–9.CrossRef Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S. Memristive behavior in thin anodic titania. IEEE Electron Device Lett. 2010;31(7):737–9.CrossRef
4.
go back to reference Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM. Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans Nanotechnol. 2011;10(5):1066–73.CrossRef Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM. Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans Nanotechnol. 2011;10(5):1066–73.CrossRef
5.
go back to reference Liu D, Zhu S, Sun K. Global anti-synchronization of complex-valued memristive neural networks with time delays. IEEE Trans Cybern. 2019;49(5):1735–47.CrossRef Liu D, Zhu S, Sun K. Global anti-synchronization of complex-valued memristive neural networks with time delays. IEEE Trans Cybern. 2019;49(5):1735–47.CrossRef
6.
go back to reference Chen J, Zeng Z, Jiang P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 2014;51:1–8.CrossRef Chen J, Zeng Z, Jiang P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 2014;51:1–8.CrossRef
7.
go back to reference Sheng Y, Huang T, Zeng Z, Miao X. Global exponential stability of memristive neural networks with mixed time-varying delays. IEEE Trans Neural Netw Learn Syst. 2021;32(8):3690–9.MathSciNetCrossRef Sheng Y, Huang T, Zeng Z, Miao X. Global exponential stability of memristive neural networks with mixed time-varying delays. IEEE Trans Neural Netw Learn Syst. 2021;32(8):3690–9.MathSciNetCrossRef
8.
go back to reference Chen C, Li L, Peng H, Yang Y. Fixed-time synchronization of inertial memristor-based neural networks with discrete delay. Neural Netw. 2019;109:81–9.CrossRef Chen C, Li L, Peng H, Yang Y. Fixed-time synchronization of inertial memristor-based neural networks with discrete delay. Neural Netw. 2019;109:81–9.CrossRef
9.
go back to reference Wei R, Cao J. Fixed-time synchronization of quaternion-valued memristive neural networks with time delays. Neural Netw. 2019;113:1–10.CrossRef Wei R, Cao J. Fixed-time synchronization of quaternion-valued memristive neural networks with time delays. Neural Netw. 2019;113:1–10.CrossRef
10.
go back to reference Simmons GF. Calculus gems: brief lives and memorable mathematics. New York, NY, USA: McGraw-Hill. 1992. Simmons GF. Calculus gems: brief lives and memorable mathematics. New York, NY, USA: McGraw-Hill. 1992.
11.
go back to reference Adler SL. Quaternionic quantum mechanics and quantum fields. New York, NY, USA: Oxford Univ. Press. 1995. Adler SL. Quaternionic quantum mechanics and quantum fields. New York, NY, USA: Oxford Univ. Press. 1995.
12.
go back to reference Took CC, Mandic DP (2009) The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans Signal Process. 2009:57(4)1316-1327. Took CC, Mandic DP (2009) The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans Signal Process. 2009:57(4)1316-1327.
13.
go back to reference Zou C, Kou K, Wang Y. Quaternion collaborative and sparse representation with application to color face recognition. IEEE Trans Image Process. 2016;25(7):3287-3302. Zou C, Kou K, Wang Y. Quaternion collaborative and sparse representation with application to color face recognition. IEEE Trans Image Process. 2016;25(7):3287-3302.
14.
go back to reference Xia Y, Jahanchahi C, Mandic DP. Quaternion-valued echo state networks. IEEE Trans Neural Netw Learn Syst. 2015;26(4):663–73.MathSciNetCrossRef Xia Y, Jahanchahi C, Mandic DP. Quaternion-valued echo state networks. IEEE Trans Neural Netw Learn Syst. 2015;26(4):663–73.MathSciNetCrossRef
15.
go back to reference Isokawa T, Kusakabe T, Matsui N, Peper F. Quaternion neural network and its application. In: Proc. 7th Int. Conf. KES, pp. 318-324. Oxford, U.K. 2003. Isokawa T, Kusakabe T, Matsui N, Peper F. Quaternion neural network and its application. In: Proc. 7th Int. Conf. KES, pp. 318-324. Oxford, U.K. 2003.
16.
go back to reference Qin S, Feng J, Song J, Wen X, Xu C. A one-layer recurrent neural network for constrained complex-variable convex optimization. IEEE Trans Neural Netw Learn Syst. 2018;29(3):534–44.MathSciNetCrossRef Qin S, Feng J, Song J, Wen X, Xu C. A one-layer recurrent neural network for constrained complex-variable convex optimization. IEEE Trans Neural Netw Learn Syst. 2018;29(3):534–44.MathSciNetCrossRef
17.
go back to reference Global dissipativity analysis for delayed quaternion-valued neural networks. Z. Tu, J. Cao, A. Alsaedi, and T. Hayat. Neural Netw. 2017;89:97–104. Global dissipativity analysis for delayed quaternion-valued neural networks. Z. Tu, J. Cao, A. Alsaedi, and T. Hayat. Neural Netw. 2017;89:97–104.
18.
go back to reference Song Q, Chen X. Multistability analysis of quaternion-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst. 2018;29(11):5430–40.MathSciNetCrossRef Song Q, Chen X. Multistability analysis of quaternion-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst. 2018;29(11):5430–40.MathSciNetCrossRef
19.
go back to reference Xia Z, Liu Y, Lu J, Cao J, Rutkowski L. Penalty method for constrained distributed quaternion-variable optimization. Neural Netw. 2021;51(11):5631–6. Xia Z, Liu Y, Lu J, Cao J, Rutkowski L. Penalty method for constrained distributed quaternion-variable optimization. Neural Netw. 2021;51(11):5631–6.
20.
go back to reference Liu Y, Zhang D, Lou J, Lu J, Cao J. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4201–11.CrossRef Liu Y, Zhang D, Lou J, Lu J, Cao J. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4201–11.CrossRef
21.
go back to reference Chen X, Song Q. State estimation for quaternion-valued neural networks with multiple time delays. IEEE Trans Syst Man Cybern Syst. 2019;49(11):2278–87.CrossRef Chen X, Song Q. State estimation for quaternion-valued neural networks with multiple time delays. IEEE Trans Syst Man Cybern Syst. 2019;49(11):2278–87.CrossRef
22.
go back to reference Wei R, Cao J. Synchronization control of quaternion-valued memristive neural networks with and without event-triggered scheme. Cogn Neurodyn. 2019;13:489–502.CrossRef Wei R, Cao J. Synchronization control of quaternion-valued memristive neural networks with and without event-triggered scheme. Cogn Neurodyn. 2019;13:489–502.CrossRef
23.
go back to reference Li N, Cao J. Global dissipativity analysis of quaternion-valued memristor-based neural networks with proportional delay. Neurocomputing. 2018;321:103–13.CrossRef Li N, Cao J. Global dissipativity analysis of quaternion-valued memristor-based neural networks with proportional delay. Neurocomputing. 2018;321:103–13.CrossRef
24.
go back to reference Jiang Z, Wang Y. Exponential input-to-state stability of quaternion-valued neural networks with time delay. Appl Math Comput. 2019;358:382–93.MathSciNet Jiang Z, Wang Y. Exponential input-to-state stability of quaternion-valued neural networks with time delay. Appl Math Comput. 2019;358:382–93.MathSciNet
25.
go back to reference Yang Z, Zhou W, Huang T. Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays. Cogn Neurodyn. 2014;8:47–54.CrossRef Yang Z, Zhou W, Huang T. Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays. Cogn Neurodyn. 2014;8:47–54.CrossRef
26.
go back to reference Zhu Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans Autom Control. 2019;64(9):3764–71.MathSciNetCrossRef Zhu Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans Autom Control. 2019;64(9):3764–71.MathSciNetCrossRef
27.
go back to reference Zhu Q, Cao J, Rakkiyappan R. Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays. Nonlinear Dyn. 2015;79:1085–98.MathSciNetCrossRef Zhu Q, Cao J, Rakkiyappan R. Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays. Nonlinear Dyn. 2015;79:1085–98.MathSciNetCrossRef
28.
go back to reference Qi X, Bao H, Cao J. Exponential input-to-state stability of quaternion-valued neural networks with time delay. Appl Math Comput. 2019;358:382–93.MathSciNet Qi X, Bao H, Cao J. Exponential input-to-state stability of quaternion-valued neural networks with time delay. Appl Math Comput. 2019;358:382–93.MathSciNet
30.
go back to reference Liuzza D, Dimarogonas DV, Bernardo MD, Johansson KH. Distributed model based event-triggered control for synchronization of multi-agent systems. Automatica. 2016;73:1–7.MathSciNetCrossRef Liuzza D, Dimarogonas DV, Bernardo MD, Johansson KH. Distributed model based event-triggered control for synchronization of multi-agent systems. Automatica. 2016;73:1–7.MathSciNetCrossRef
31.
go back to reference Guo Z, Gong S, Wen S, Huang T. Event-based synchronization control for memristive neural networks with time-varying delay. IEEE Trans Cybern. 2019;49(9):3268–77.CrossRef Guo Z, Gong S, Wen S, Huang T. Event-based synchronization control for memristive neural networks with time-varying delay. IEEE Trans Cybern. 2019;49(9):3268–77.CrossRef
32.
go back to reference Liu H, Wang Z, Shen B, Liu X. Event-triggered state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case. IEEE Trans Neural Netw Learn Syst. 2017;29(8):3726–37.MathSciNet Liu H, Wang Z, Shen B, Liu X. Event-triggered state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete time case. IEEE Trans Neural Netw Learn Syst. 2017;29(8):3726–37.MathSciNet
33.
go back to reference Yao L, Wang Z, Huang X, Li Y, Ma Q, Shen H. Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delay. IEEE Trans Neural Netw Learn Syst. 2023;34(2):909–20.MathSciNetCrossRef Yao L, Wang Z, Huang X, Li Y, Ma Q, Shen H. Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delay. IEEE Trans Neural Netw Learn Syst. 2023;34(2):909–20.MathSciNetCrossRef
34.
go back to reference Ni Y, Wang Z, Huang X, Ma Q, Shen H. Intermittent sampled-data control for local stabilization of neural networks subject to actuator saturation: a work-interval-dependent functional approach. IEEE Transactions on Neural Networks and Learning Systems. 2022. https://doi.org/10.1109/TNNLS.2022.3180076 Ni Y, Wang Z, Huang X, Ma Q, Shen H. Intermittent sampled-data control for local stabilization of neural networks subject to actuator saturation: a work-interval-dependent functional approach. IEEE Transactions on Neural Networks and Learning Systems. 2022. https://​doi.​org/​10.​1109/​TNNLS.​2022.​3180076
Metadata
Title
An Event-Triggered Method for Stabilization of Stochastic Quaternion-Valued Memristive Neural Networks
Authors
Ruoyu Wei
Jinde Cao
Sergey Gorbachev
Publication date
12-08-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10186-9

Premium Partner