Skip to main content
Top

2024 | OriginalPaper | Chapter

An Examination of the Alleged Privacy Threats of Confidence-Ranked Reconstruction of Census Microdata

Authors : David Sánchez, Najeeb Jebreel, Krishnamurty Muralidhar, Josep Domingo-Ferrer, Alberto Blanco-Justicia

Published in: Privacy in Statistical Databases

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The threat of reconstruction attacks has led the U.S. Census Bureau (USCB) to replace in the Decennial Census 2020 the traditional statistical disclosure limitation based on rank swapping with one based on differential privacy (DP), leading to substantial accuracy loss of released statistics. Yet, it has been argued that, if many different reconstructions are compatible with the released statistics, most of them do not correspond to actual original data, which protects against respondent reidentification. Recently, a new attack has been proposed, which incorporates the confidence that a reconstructed record was in the original data. The alleged risk of disclosure entailed by such confidence-ranked reconstruction has renewed the interest of the USCB to use DP-based solutions. To forestall a potential accuracy loss in future releases, we show that the proposed reconstruction is neither effective as a reconstruction method nor conducive to disclosure as claimed by its authors. Specifically, we report empirical results showing the proposed ranking cannot guide reidentification or attribute disclosure attacks, and hence fails to warrant the utility sacrifice entailed by the use of DP to release census statistical data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abowd, J.: Declaration of John M. Abowd. Case no. 3:21-CV-211-RAH-ECM-KCN (2021) Abowd, J.: Declaration of John M. Abowd. Case no. 3:21-CV-211-RAH-ECM-KCN (2021)
2.
go back to reference Abowd, J., Hawes, M.: Confidentiality protection in the 2020 U.S. Census of population and housing. Annu. Rev. Stat. Appl. 10, 119–144 (2023) Abowd, J., Hawes, M.: Confidentiality protection in the 2020 U.S. Census of population and housing. Annu. Rev. Stat. Appl. 10, 119–144 (2023)
3.
go back to reference Blanco-Justicia, A., Sánchez, D., Domingo-Ferrer, J., Muralidhar, K.: A critical review on the use (and misuse) of differential privacy in machine learning. ACM Comput. Surv. 55(8), 1–16 (2023)CrossRef Blanco-Justicia, A., Sánchez, D., Domingo-Ferrer, J., Muralidhar, K.: A critical review on the use (and misuse) of differential privacy in machine learning. ACM Comput. Surv. 55(8), 1–16 (2023)CrossRef
5.
go back to reference Dick, T., et al.: Confidence-ranked reconstruction of census microdata from published statistics. Proc. Natl. Acad. Sci. U.S.A. 120(8), e2218605120 (2023) Dick, T., et al.: Confidence-ranked reconstruction of census microdata from published statistics. Proc. Natl. Acad. Sci. U.S.A. 120(8), e2218605120 (2023)
6.
go back to reference Dick, T., et al.: Reply to Sánchez et al.: multiplicity does not protect privacy. Proc. Natl. Acad. Sci. U.S.A. 120(8), e2304263120 (2023) Dick, T., et al.: Reply to Sánchez et al.: multiplicity does not protect privacy. Proc. Natl. Acad. Sci. U.S.A. 120(8), e2304263120 (2023)
7.
go back to reference Domingo-Ferrer, J., Sánchez, D., Blanco-Justicia, A.: The limits of differential privacy (and its misuse in data release and machine learning). Commun. ACM 64(7), 33–35 (2021)CrossRef Domingo-Ferrer, J., Sánchez, D., Blanco-Justicia, A.: The limits of differential privacy (and its misuse in data release and machine learning). Commun. ACM 64(7), 33–35 (2021)CrossRef
11.
go back to reference Hotz, V., et al.: Balancing data privacy and usability in the federal statistical system. Proc. Natl. Acad. Sci. U.S.A. 119(31), e2104906119 (2022) Hotz, V., et al.: Balancing data privacy and usability in the federal statistical system. Proc. Natl. Acad. Sci. U.S.A. 119(31), e2104906119 (2022)
12.
go back to reference Keller, S., Abowd, J.: Database reconstruction does compromise confidentiality. Proc. Natl. Acad. Sci. U.S.A. 120(12), e2300976120 (2023) Keller, S., Abowd, J.: Database reconstruction does compromise confidentiality. Proc. Natl. Acad. Sci. U.S.A. 120(12), e2300976120 (2023)
13.
go back to reference Kenny, C., Kuriwaki, S., McCartan, C., Rosenman, E., Simko, T., Imai, K.: The use of differential privacy for census data and its impact on redistricting: the case of the 2020 U.S. Census. Sci. Adv. 7(41) (2021) Kenny, C., Kuriwaki, S., McCartan, C., Rosenman, E., Simko, T., Imai, K.: The use of differential privacy for census data and its impact on redistricting: the case of the 2020 U.S. Census. Sci. Adv. 7(41) (2021)
14.
go back to reference Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 23rd IEEE International Conference on Data Engineering (ICDE’07), pp. 106–115 (2007) Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 23rd IEEE International Conference on Data Engineering (ICDE’07), pp. 106–115 (2007)
15.
go back to reference Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3–es (2007) Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3–es (2007)
18.
go back to reference Muralidhar, K., Domingo-Ferrer, J.: Database reconstruction is not so easy and is different from reidentification. J. Off. Stat. 39(3), 381–398 (2023)CrossRef Muralidhar, K., Domingo-Ferrer, J.: Database reconstruction is not so easy and is different from reidentification. J. Off. Stat. 39(3), 381–398 (2023)CrossRef
19.
go back to reference Ruggles, S., Riper, D.V.: The role of chance in the Census Bureau database reconstruction experiment. Popul. Res. Policy Rev. 41, 781–788 (2022)CrossRef Ruggles, S., Riper, D.V.: The role of chance in the Census Bureau database reconstruction experiment. Popul. Res. Policy Rev. 41, 781–788 (2022)CrossRef
20.
go back to reference Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRef Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRef
21.
go back to reference Santos-Lozada, A., Howard, J., Verdery, A.M.: How differential privacy will affect our understanding of health disparities in the united states. Proc. Natl. Acad. Sci. U.S.A. 117(24), 13405–13412 (2020) Santos-Lozada, A., Howard, J., Verdery, A.M.: How differential privacy will affect our understanding of health disparities in the united states. Proc. Natl. Acad. Sci. U.S.A. 117(24), 13405–13412 (2020)
Metadata
Title
An Examination of the Alleged Privacy Threats of Confidence-Ranked Reconstruction of Census Microdata
Authors
David Sánchez
Najeeb Jebreel
Krishnamurty Muralidhar
Josep Domingo-Ferrer
Alberto Blanco-Justicia
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69651-0_14

Premium Partner