Skip to main content
Top
Published in: Wireless Personal Communications 4/2020

15-04-2020

An Experimental Evaluation of Link Outage Due to Beam Wander in a Turbulent FSO Link

Authors: Priyanka, Maninder Lal Singh, Harpuneet Singh Gill, Mandeep Singh, Sehajpal Kaur

Published in: Wireless Personal Communications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless communication using free space optics (FSO) is becoming attractive for data transmission purposes. However, the system performance gets affected by atmospheric factors such as turbulence which induces beam wander effect thus degrading the reliability of FSO links. A turbulence simulation experiment is performed in laboratory to study the beam wander effect. A statistical prediction model for beam wander effect in a turbulent FSO link is presented. Based on this model, outage calculations are performed and compared against experimental values. The decline in outage due to increase in aperture area is computed both for predicted as well as experimental values. The results show similarity in both the values for small aperture sizes but differ for larger ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodwin, F. E. (1970). A review of operational laser communication systems. Proceedings of the IEEE,58(10), 1746–1752.CrossRef Goodwin, F. E. (1970). A review of operational laser communication systems. Proceedings of the IEEE,58(10), 1746–1752.CrossRef
2.
go back to reference Nor, N. A. M., Ghassemlooy, Z., Zvanovec, S., Khalighi, M. A., Bhatnagar, M. R., Bohata, J., et al. (2019). Experimental analysis of a triple-hop relay-assisted FSO system with turbulence. Optical Switching and Networking,33, 194–198. Nor, N. A. M., Ghassemlooy, Z., Zvanovec, S., Khalighi, M. A., Bhatnagar, M. R., Bohata, J., et al. (2019). Experimental analysis of a triple-hop relay-assisted FSO system with turbulence. Optical Switching and Networking,33, 194–198.
3.
go back to reference Babani, S., Bature, A. A., Faruk, M. I., & Dankadai, N. K. (2014). Comparative study between fiber optic and copper in communication link. International Journal of Technical Research and Application,2, 59–63. Babani, S., Bature, A. A., Faruk, M. I., & Dankadai, N. K. (2014). Comparative study between fiber optic and copper in communication link. International Journal of Technical Research and Application,2, 59–63.
4.
go back to reference Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications,3(8), 1402–1409.CrossRef Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications,3(8), 1402–1409.CrossRef
5.
go back to reference Hocking, W. K. (1985). Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Science,20(6), 1403–1422.CrossRef Hocking, W. K. (1985). Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Science,20(6), 1403–1422.CrossRef
6.
go back to reference Latteck, R., Singer, W., & Hocking, W. K. (2005). Measurement of turbulent kinetic energy dissipationrates in the mesosphere by a 3 MHz Doppler radar. Advances in Space Research,35(11), 1905–1910.CrossRef Latteck, R., Singer, W., & Hocking, W. K. (2005). Measurement of turbulent kinetic energy dissipationrates in the mesosphere by a 3 MHz Doppler radar. Advances in Space Research,35(11), 1905–1910.CrossRef
7.
go back to reference Popoola, W. O., Ghassemlooy, Z., Lee, C. G., & Boucouvalas, A. C. (2010). Scintillation effect on intensity modulated laser communication systems—A laboratory demonstration. Optics & Laser Technology,42(4), 682–692.CrossRef Popoola, W. O., Ghassemlooy, Z., Lee, C. G., & Boucouvalas, A. C. (2010). Scintillation effect on intensity modulated laser communication systems—A laboratory demonstration. Optics & Laser Technology,42(4), 682–692.CrossRef
8.
go back to reference Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials,19, 57–96.CrossRef Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials,19, 57–96.CrossRef
9.
go back to reference Andrews, L. C., Phillips, R. L., Sasiela, R. J., & Parenti, R. R. (2006). Strehl ratio and scintillation theoryfor uplink Gaussian-beam waves: Beam wander effects. Optical Engineering,45(7), 076001-1–076001-12. Andrews, L. C., Phillips, R. L., Sasiela, R. J., & Parenti, R. R. (2006). Strehl ratio and scintillation theoryfor uplink Gaussian-beam waves: Beam wander effects. Optical Engineering,45(7), 076001-1–076001-12.
10.
go back to reference Churnside, J. H., & Lataitis, R. J. (1990). Wander of an optical beam in the turbulent atmosphere. Applied Optics,29(7), 926–930.CrossRef Churnside, J. H., & Lataitis, R. J. (1990). Wander of an optical beam in the turbulent atmosphere. Applied Optics,29(7), 926–930.CrossRef
11.
go back to reference Kaur, G., Singh, H., & Sappal, A. S. (2017). Free space optical using different modulation techniques—A review. International Journal of Engineering Trends and Technology (IJETT),43(2), 105–109. Kaur, G., Singh, H., & Sappal, A. S. (2017). Free space optical using different modulation techniques—A review. International Journal of Engineering Trends and Technology (IJETT),43(2), 105–109.
12.
go back to reference Zhu, X., Kahn, J. M., & Wang, J. (2003). Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques. IEEE Photonics Technology Letters,15(4), 623–625.CrossRef Zhu, X., Kahn, J. M., & Wang, J. (2003). Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques. IEEE Photonics Technology Letters,15(4), 623–625.CrossRef
13.
go back to reference Zhu, X., & Kahn, J. M. (2003). Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications,51(3), 509–516.CrossRef Zhu, X., & Kahn, J. M. (2003). Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications,51(3), 509–516.CrossRef
14.
go back to reference Abtahi, M., Lemieux, P., Mathlouthi, W., & Rusch, L. A. (2006). Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. Journal of Lightwave Technology,24(12), 4966–4973.CrossRef Abtahi, M., Lemieux, P., Mathlouthi, W., & Rusch, L. A. (2006). Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. Journal of Lightwave Technology,24(12), 4966–4973.CrossRef
15.
go back to reference Goyal, P., Kumar, A., & Nath, V. (2015). Mitigation of atmospheric turbulence in free space optics: A review. In Presented at the 2015 fifth international conference on advanced computing & communication technologies (ACCT) (pp. 634–640). IEEE. Goyal, P., Kumar, A., & Nath, V. (2015). Mitigation of atmospheric turbulence in free space optics: A review. In Presented at the 2015 fifth international conference on advanced computing & communication technologies (ACCT) (pp. 634–640). IEEE.
16.
go back to reference Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for optical beam scattering and wandering in FSO communications. Journal of Lightwave Technology,32(7), 1323–1328.CrossRef Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for optical beam scattering and wandering in FSO communications. Journal of Lightwave Technology,32(7), 1323–1328.CrossRef
17.
go back to reference Majumdar, A. K., & Gamo, H. (1982). Statistical measurement of irradiance fluctuations of a multipass laser beam propagated through laboratory-simulated atmospheric turbulence. Applied Optics,21(12), 2229–2235.CrossRef Majumdar, A. K., & Gamo, H. (1982). Statistical measurement of irradiance fluctuations of a multipass laser beam propagated through laboratory-simulated atmospheric turbulence. Applied Optics,21(12), 2229–2235.CrossRef
18.
go back to reference Hudcova, L., & Barcik, P. (2012). Experimental measurement of beam wander in the turbulent atmospheric transmission media. In Proceedings of 22nd international conference radioelektronika 2012 (pp. 1–4). IEEE. Hudcova, L., & Barcik, P. (2012). Experimental measurement of beam wander in the turbulent atmospheric transmission media. In Proceedings of 22nd international conference radioelektronika 2012 (pp. 1–4). IEEE.
19.
go back to reference Kaushal, H., Kumar, V., Dutta, A., Aennam, H., Jain, V. K., Kar, S., et al. (2011). Experimental study on beam wander under varying atmospheric turbulence conditions. IEEE Photonics Technology Letters,23(22), 1691–1693.CrossRef Kaushal, H., Kumar, V., Dutta, A., Aennam, H., Jain, V. K., Kar, S., et al. (2011). Experimental study on beam wander under varying atmospheric turbulence conditions. IEEE Photonics Technology Letters,23(22), 1691–1693.CrossRef
20.
go back to reference Ishimaru, A. (1969). Fluctuations of a beam wave propagating through a locally homogeneous medium. Radio Science,4(4), 295–305.CrossRef Ishimaru, A. (1969). Fluctuations of a beam wave propagating through a locally homogeneous medium. Radio Science,4(4), 295–305.CrossRef
21.
go back to reference Qiang, X., Li, Y., Zong, F., & Zhao, J. (2009). Measurement of laboratory-simulated atmospheric turbulence by PSD. In 9th International conference on electronic measurement & instruments (pp. 2–90). Qiang, X., Li, Y., Zong, F., & Zhao, J. (2009). Measurement of laboratory-simulated atmospheric turbulence by PSD. In 9th International conference on electronic measurement & instruments (pp. 2–90).
22.
go back to reference Andrews, L. C., Phillips, R. L., & Hopen, C. Y. (2001). Laser beam scintillation with applications (Vol. 99). Bellingham: SPIE Press.CrossRef Andrews, L. C., Phillips, R. L., & Hopen, C. Y. (2001). Laser beam scintillation with applications (Vol. 99). Bellingham: SPIE Press.CrossRef
Metadata
Title
An Experimental Evaluation of Link Outage Due to Beam Wander in a Turbulent FSO Link
Authors
Priyanka
Maninder Lal Singh
Harpuneet Singh Gill
Mandeep Singh
Sehajpal Kaur
Publication date
15-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07333-y

Other articles of this Issue 4/2020

Wireless Personal Communications 4/2020 Go to the issue