Skip to main content
Top
Published in: Journal of Visualization 5/2020

05-07-2020 | Regular Paper

An experimental study of gas nuclei-assisted hydrodynamic cavitation for aquaculture water treatment

Authors: Tandiono Tandiono, Chang Wei Kang, Xin Lu, Cary K. Turangan, Matthew Tan, Hafiiz Bin Osman, Fannon Lim

Published in: Journal of Visualization | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present an experimental study on hydrodynamic cavitation generated by accelerating liquid through a series of constrictions in the presence of gas bubbles and explore its possible applications in water treatment with particular example in aquaculture industry. The formation of intense cavitation bubbles is visualized using a high-speed photography. The cavitation is initiated when a gas bubble moves towards a narrow cylindrical constriction where it accelerates, expands and then splits into smaller bubbles owing to the sharp pressure gradient of the liquid flow inside the constriction section. As the bubbles emerge downstream from the constrictions, they are exposed to a higher pressure region and collapse violently forming a cloud of bubbles. Smaller and more dispersed bubbles are produced by further passing the bubbles through a second series of constrictions. By introducing gas bubbles that serve as cavitation nuclei prior to the constriction, it is unnecessary to force the liquid flow below its vapor pressure to produce intense cavitation, thus enhancing the cavitation activities. We also present experimental evidences of a significant reduction of gram-negative Escherichia coli concentration after exposing them to the cavitation bubbles. Yet, the cavitation bubbles are found to be not sufficiently strong to lyse endospores Bacillus subtilis that are widely used in aquacultures.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ando K, Liu AQ, Ohl CD (2012) Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 109:044501CrossRef Ando K, Liu AQ, Ohl CD (2012) Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 109:044501CrossRef
go back to reference Badve M, Gogate P, Pandit A, Csoka L (2013) Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol 106:15–21CrossRef Badve M, Gogate P, Pandit A, Csoka L (2013) Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol 106:15–21CrossRef
go back to reference Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Ann Rev Fluid Mech 19:99–123CrossRef Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Ann Rev Fluid Mech 19:99–123CrossRef
go back to reference Braeutigam P, Franke M, Schneider RJ, Lehmann A, Stolle A, Ondruschka B (2012) Degradation of carbamazepine in environmentally relevant concentrations in water by hydrodynamic-acoustic-cavitation (HAC). Water Res 46:2469–2477CrossRef Braeutigam P, Franke M, Schneider RJ, Lehmann A, Stolle A, Ondruschka B (2012) Degradation of carbamazepine in environmentally relevant concentrations in water by hydrodynamic-acoustic-cavitation (HAC). Water Res 46:2469–2477CrossRef
go back to reference Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152:498–502CrossRef Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152:498–502CrossRef
go back to reference Dean WR (1927) XVI. Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci 4:208–223CrossRef Dean WR (1927) XVI. Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci 4:208–223CrossRef
go back to reference Dennis SCR, Ng M (1982) Dual solutions for steady laminar flow through a curved tube. Q J Mech Appl Math 35:305–324CrossRef Dennis SCR, Ng M (1982) Dual solutions for steady laminar flow through a curved tube. Q J Mech Appl Math 35:305–324CrossRef
go back to reference Ding Z, Gracewski SM (1996) The behaviour of a gas cavity impacted by a weak or strong shock wave. J Fluid Mech 309:183–209MathSciNetCrossRef Ding Z, Gracewski SM (1996) The behaviour of a gas cavity impacted by a weak or strong shock wave. J Fluid Mech 309:183–209MathSciNetCrossRef
go back to reference Ghayal D, Pandit AB, Rathod VK (2013) Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 20:322–328CrossRef Ghayal D, Pandit AB, Rathod VK (2013) Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 20:322–328CrossRef
go back to reference Gogate PR (2011) Hydrodynamic cavitation for food and water processing. Food Bioprocess Tech 4:996–1011CrossRef Gogate PR (2011) Hydrodynamic cavitation for food and water processing. Food Bioprocess Tech 4:996–1011CrossRef
go back to reference Gogate PR, Pandit AB (2001) Hydrodynamic cavitation reactors: a state of the art review. Rev Chem Eng 17:1–85CrossRef Gogate PR, Pandit AB (2001) Hydrodynamic cavitation reactors: a state of the art review. Rev Chem Eng 17:1–85CrossRef
go back to reference Gogate PR, Shaha S, Csoka L (2014) Intensification of cavitational activity in the sonochemical reactors using gaseous additives. Chem Eng J 239:364–372CrossRef Gogate PR, Shaha S, Csoka L (2014) Intensification of cavitational activity in the sonochemical reactors using gaseous additives. Chem Eng J 239:364–372CrossRef
go back to reference Jyoti KK, Pandit AB (2001) Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 7:201–212CrossRef Jyoti KK, Pandit AB (2001) Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 7:201–212CrossRef
go back to reference Krishnan JS, Dwivedi P, Moholkar VS (2006) Numerical investigation into the chemistry induced by hydrodynamic cavitation. Ind Eng Chem Res 45:1493–1504CrossRef Krishnan JS, Dwivedi P, Moholkar VS (2006) Numerical investigation into the chemistry induced by hydrodynamic cavitation. Ind Eng Chem Res 45:1493–1504CrossRef
go back to reference Kumar P, Khanna S, Moholkar VS (2012) Flow regime maps and optimization thereby of hydrodynamic cavitation reactors. AIChE J 58:3858–3866CrossRef Kumar P, Khanna S, Moholkar VS (2012) Flow regime maps and optimization thereby of hydrodynamic cavitation reactors. AIChE J 58:3858–3866CrossRef
go back to reference Leighton T (1994) The acoustic bubble. Academic press, London Leighton T (1994) The acoustic bubble. Academic press, London
go back to reference Li P, Song Y, Yu S (2014) Removal of microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. Water Res 62:241–248CrossRef Li P, Song Y, Yu S (2014) Removal of microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. Water Res 62:241–248CrossRef
go back to reference Martin CS, Medlarz H, Wiggert DC, Brennen C (1981) Cavitation inception in spool valves. J Fluids Eng 103:564–575CrossRef Martin CS, Medlarz H, Wiggert DC, Brennen C (1981) Cavitation inception in spool valves. J Fluids Eng 103:564–575CrossRef
go back to reference Miller S (1993) Disinfection products in water treatment. Environ Sci Tech 27:2292–2294CrossRef Miller S (1993) Disinfection products in water treatment. Environ Sci Tech 27:2292–2294CrossRef
go back to reference Moholkar VS, Pandit AB (2001) Modeling of hydrodynamic cavitation reactors: a unified approach. Chem Eng Sci 56:6295–6302CrossRef Moholkar VS, Pandit AB (2001) Modeling of hydrodynamic cavitation reactors: a unified approach. Chem Eng Sci 56:6295–6302CrossRef
go back to reference Osman H, Lim F, Lucas M, Balasubramaniam P (2016) Development of an ultrasonic resonator for ballast water disinfection. Phys Proc 87:99–104CrossRef Osman H, Lim F, Lucas M, Balasubramaniam P (2016) Development of an ultrasonic resonator for ballast water disinfection. Phys Proc 87:99–104CrossRef
go back to reference Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef
go back to reference Rahn O (1945) Physical methods of sterilization of microorganisms. Bacteriol Rev 9:1–47CrossRef Rahn O (1945) Physical methods of sterilization of microorganisms. Bacteriol Rev 9:1–47CrossRef
go back to reference Save SS, Pandit AB, Joshi JB (1994) Microbial cell disruption: role of cavitation. Chem Eng J Biochem Eng J 55:B67–B72CrossRef Save SS, Pandit AB, Joshi JB (1994) Microbial cell disruption: role of cavitation. Chem Eng J Biochem Eng J 55:B67–B72CrossRef
go back to reference Seneviratne PN (2005) Device for treating aqueous liquids. US Pat Appl 11(908):938 Seneviratne PN (2005) Device for treating aqueous liquids. US Pat Appl 11(908):938
go back to reference Shibata S, Nishio S, Sou A, Akayama D, Mashida M (2015) Evaluation of cavitation in injector nozzle and correlation with liquid atomization. J Vis 18(3):481–492CrossRef Shibata S, Nishio S, Sou A, Akayama D, Mashida M (2015) Evaluation of cavitation in injector nozzle and correlation with liquid atomization. J Vis 18(3):481–492CrossRef
go back to reference Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683CrossRef Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683CrossRef
go back to reference Suslick KS, Mdleleni MM, Ries JT (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303–9304CrossRef Suslick KS, Mdleleni MM, Ries JT (1997) Chemistry induced by hydrodynamic cavitation. J Am Chem Soc 119:9303–9304CrossRef
go back to reference Tandiono T, Klaseboer E, Ohl SW, Ow DSW, Choo ABH, Li F, Ohl CD (2013) Resonant stretching of cells and other elastic objects from transient cavitation. Soft Matter 9:8687–8696CrossRef Tandiono T, Klaseboer E, Ohl SW, Ow DSW, Choo ABH, Li F, Ohl CD (2013) Resonant stretching of cells and other elastic objects from transient cavitation. Soft Matter 9:8687–8696CrossRef
go back to reference Tandiono T, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Camattari A, Ohl CD (2010) Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip 10:1848–1855CrossRef Tandiono T, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Camattari A, Ohl CD (2010) Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip 10:1848–1855CrossRef
go back to reference Tandiono T, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl CD (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci USA 108:5996–5998CrossRef Tandiono T, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl CD (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci USA 108:5996–5998CrossRef
go back to reference Tandiono T, Ow DSW, Driessen L, Chin CSH, Klaseboer E, Choo ABH, Ohl SW, Ohl CD (2012) Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12:780–786CrossRef Tandiono T, Ow DSW, Driessen L, Chin CSH, Klaseboer E, Choo ABH, Ohl SW, Ohl CD (2012) Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12:780–786CrossRef
go back to reference Tsolaki E, Diamadopoulos E (2010) Technologies for ballast water treatment: a review. J Chem Tech Biotech 85:19–32CrossRef Tsolaki E, Diamadopoulos E (2010) Technologies for ballast water treatment: a review. J Chem Tech Biotech 85:19–32CrossRef
go back to reference Turangan CK, Ball GJ, Jamaluddin AR, Leighton TG (2017) Numerical studies of cavitation erosion on an elastic–plastic material caused by shock-induced bubble collapse. Proc R Soc A Math Phys Eng Sci 473(2205):20170315CrossRef Turangan CK, Ball GJ, Jamaluddin AR, Leighton TG (2017) Numerical studies of cavitation erosion on an elastic–plastic material caused by shock-induced bubble collapse. Proc R Soc A Math Phys Eng Sci 473(2205):20170315CrossRef
go back to reference Turangan CK, Jamaluddin AR, Ball GJ, Leighton TG (2008) Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J Fluid Mech 598:1–25CrossRef Turangan CK, Jamaluddin AR, Ball GJ, Leighton TG (2008) Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J Fluid Mech 598:1–25CrossRef
go back to reference Vaidya HA, Ertunç Ö, Lichtenegger T, Hachmann J, Delgado A, Skupin A (2017) High-speed visualization of acoustically excited cavitation bubbles in a cluster near a rigid boundary. J Vis 20(2):359–368CrossRef Vaidya HA, Ertunç Ö, Lichtenegger T, Hachmann J, Delgado A, Skupin A (2017) High-speed visualization of acoustically excited cavitation bubbles in a cluster near a rigid boundary. J Vis 20(2):359–368CrossRef
go back to reference Xu R, Jiang R, Wang J, Liu B, Gao J, Wang B, Han G, Zhang X (2010) A novel method treating organic wastewater: air-bubble cavitation passing small glass balls. Chem Eng J 164:23–28CrossRef Xu R, Jiang R, Wang J, Liu B, Gao J, Wang B, Han G, Zhang X (2010) A novel method treating organic wastewater: air-bubble cavitation passing small glass balls. Chem Eng J 164:23–28CrossRef
go back to reference Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254:829–832CrossRef Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254:829–832CrossRef
Metadata
Title
An experimental study of gas nuclei-assisted hydrodynamic cavitation for aquaculture water treatment
Authors
Tandiono Tandiono
Chang Wei Kang
Xin Lu
Cary K. Turangan
Matthew Tan
Hafiiz Bin Osman
Fannon Lim
Publication date
05-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Visualization / Issue 5/2020
Print ISSN: 1343-8875
Electronic ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00668-5

Other articles of this Issue 5/2020

Journal of Visualization 5/2020 Go to the issue

Premium Partner