Skip to main content
Top
Published in: Neural Computing and Applications 8/2019

17-01-2018 | Original Article

An expert 2DOF fractional order fuzzy PID controller for nonlinear systems

Authors: Vijay Mohan, Himanshu Chhabra, Asha Rani, Vijander Singh

Published in: Neural Computing and Applications | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a generic two-degree-of-freedom fractional order fuzzy PI-D (2DOF FOFPI-D) controller dedicated to a class of nonlinear systems. The control law for proposed scheme is derived from basic 2DOF fractional order PID controller in discrete domain. Expert intelligence is embedded in overall derived control law by utilizing formula-based fuzzy design methodology. The controller structure comprises of fractional order fuzzy PI (FOFPI) and fractional order derivative filter to handle multiple issues and provides flexibility in design and self-tuning control feature. Further, the proposed scheme is compared with its integer order counterpart and 2DOF PI-D controller for coupled nonlinear 2-link robotic arm in real operating environment. The parameters of designed controllers are optimally tuned using multi-objective non-dominated sorting genetic algorithm-II for attaining low variation in control effort and error index. Intensive simulation studies are performed to analyze trajectory tracking, model uncertainty, disturbance due to cogging, sensor noise and noise as well as disturbance rejection simultaneously. Results demonstrate the superior performance of 2DOF FOFPI-D controller as compared to other designed controllers in the facets of different operating conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Miccio M, Cosenza B (2014) Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers. J Process Control 24(5):475–484CrossRef Miccio M, Cosenza B (2014) Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers. J Process Control 24(5):475–484CrossRef
2.
go back to reference Precup R-E, Preitl S, Petriu EM, Tar JK, Tomescu ML, Pozna C (2009) Generic two-degree-of-freedom linear and fuzzy controllers for integral processes. J Frankl Inst 346(10):980–1003MathSciNetMATHCrossRef Precup R-E, Preitl S, Petriu EM, Tar JK, Tomescu ML, Pozna C (2009) Generic two-degree-of-freedom linear and fuzzy controllers for integral processes. J Frankl Inst 346(10):980–1003MathSciNetMATHCrossRef
3.
go back to reference Malki HA, Li H, Chen G (1994) New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Trans Fuzzy Syst 2(4):245–254CrossRef Malki HA, Li H, Chen G (1994) New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Trans Fuzzy Syst 2(4):245–254CrossRef
4.
go back to reference Misir D, Malki HA, Guanrong C (1996) Design and analysis of a fuzzy proportional–integral–derivative controller. Fuzzy Sets Syst 79(3):297–314MathSciNetMATHCrossRef Misir D, Malki HA, Guanrong C (1996) Design and analysis of a fuzzy proportional–integral–derivative controller. Fuzzy Sets Syst 79(3):297–314MathSciNetMATHCrossRef
5.
go back to reference Malki HA, Misir D, Feigenspan D, Guanrong C (1997) Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans Control Syst Technol 5(3):371–378CrossRef Malki HA, Misir D, Feigenspan D, Guanrong C (1997) Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans Control Syst Technol 5(3):371–378CrossRef
6.
go back to reference Sooraksa P, Chen G (1998) Mathematical modeling and fuzzy control of a flexible-link robot arm. Math Comput Model 27(6):73–93MATHCrossRef Sooraksa P, Chen G (1998) Mathematical modeling and fuzzy control of a flexible-link robot arm. Math Comput Model 27(6):73–93MATHCrossRef
7.
go back to reference Li W, Chang X, Wahl FM, Farrell J (2001) Tracking control of a manipulator under uncertainty by FUZZY P + ID controller. Fuzzy Sets Syst 122(1):125–137MathSciNetMATHCrossRef Li W, Chang X, Wahl FM, Farrell J (2001) Tracking control of a manipulator under uncertainty by FUZZY P + ID controller. Fuzzy Sets Syst 122(1):125–137MathSciNetMATHCrossRef
8.
go back to reference Er MJ, Sun YL (2001) Hybrid fuzzy proportional-integral plus conventional derivative control of linear and nonlinear systems. IEEE Trans Ind Electron 48(6):1109–1117 Er MJ, Sun YL (2001) Hybrid fuzzy proportional-integral plus conventional derivative control of linear and nonlinear systems. IEEE Trans Ind Electron 48(6):1109–1117
9.
go back to reference Tang KS, Kim Fung M, Guanrong C, Kwong S (2001) An optimal fuzzy PID controller. IEEE Trans Ind Electron 48(4):757–765CrossRef Tang KS, Kim Fung M, Guanrong C, Kwong S (2001) An optimal fuzzy PID controller. IEEE Trans Ind Electron 48(4):757–765CrossRef
10.
go back to reference Tang W, Chen G, Lu R (2001) A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets Syst 118(1):109–119MathSciNetCrossRef Tang W, Chen G, Lu R (2001) A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets Syst 118(1):109–119MathSciNetCrossRef
12.
go back to reference Chen G, Pham TT (2000) Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. CRC Press, Boca RatonCrossRef Chen G, Pham TT (2000) Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. CRC Press, Boca RatonCrossRef
13.
go back to reference Mohan V, Rani A, Singh V (2017) Robust adaptive fuzzy controller applied to double inverted pendulum. J Intell Fuzzy Syst 32(5):3669–3687CrossRef Mohan V, Rani A, Singh V (2017) Robust adaptive fuzzy controller applied to double inverted pendulum. J Intell Fuzzy Syst 32(5):3669–3687CrossRef
14.
go back to reference Kumar A, Kumar V (2017) Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator. AEU Int J Electron Commun 79(Supplement C):219–233CrossRef Kumar A, Kumar V (2017) Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator. AEU Int J Electron Commun 79(Supplement C):219–233CrossRef
15.
go back to reference Kumar A, Kumar V (2018) Performance analysis of optimal hybrid novel interval type-2 fractional order fuzzy logic controllers for fractional order systems. Expert Syst Appl 93(Supplement C):435–455CrossRef Kumar A, Kumar V (2018) Performance analysis of optimal hybrid novel interval type-2 fractional order fuzzy logic controllers for fractional order systems. Expert Syst Appl 93(Supplement C):435–455CrossRef
16.
go back to reference Sharma R, Gaur P, Mittal A (2016) Design of two-layered fractional order fuzzy logic controllers applied to robotic manipulator with variable payload. Appl Soft Comput 47:565–576CrossRef Sharma R, Gaur P, Mittal A (2016) Design of two-layered fractional order fuzzy logic controllers applied to robotic manipulator with variable payload. Appl Soft Comput 47:565–576CrossRef
17.
go back to reference Das S, Pan I, Das S (2013) Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans 52(4):550–566CrossRef Das S, Pan I, Das S (2013) Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans 52(4):550–566CrossRef
18.
go back to reference Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25(2):430–442CrossRef Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25(2):430–442CrossRef
20.
go back to reference Jesus IS, Barbosa RS (2015) Genetic optimization of fuzzy fractional PD + I controllers. ISA Trans 57:220–230CrossRef Jesus IS, Barbosa RS (2015) Genetic optimization of fuzzy fractional PD + I controllers. ISA Trans 57:220–230CrossRef
21.
go back to reference Haji VH, Monje CA (2017) Fractional order fuzzy-PID control of a combined cycle power plant using Particle Swarm Optimization algorithm with an improved dynamic parameters selection. Appl Soft Comput 58:256–264CrossRef Haji VH, Monje CA (2017) Fractional order fuzzy-PID control of a combined cycle power plant using Particle Swarm Optimization algorithm with an improved dynamic parameters selection. Appl Soft Comput 58:256–264CrossRef
23.
go back to reference Pan I, Korre A, Das S, Durucan S (2012) Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn 70(4):2445–2461MathSciNetCrossRef Pan I, Korre A, Das S, Durucan S (2012) Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn 70(4):2445–2461MathSciNetCrossRef
24.
go back to reference Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29CrossRef Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29CrossRef
25.
go back to reference Sharma R, Rana KPS, Kumar V (2014) Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl 41(9):4274–4289CrossRef Sharma R, Rana KPS, Kumar V (2014) Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl 41(9):4274–4289CrossRef
26.
go back to reference Kumar V, Rana K (2017) Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. J Frankl Inst 354(2):993–1022MathSciNetMATHCrossRef Kumar V, Rana K (2017) Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. J Frankl Inst 354(2):993–1022MathSciNetMATHCrossRef
27.
go back to reference Das S, Pan I, Das S (2013) Fractional order fuzzy control of nuclear reactor power with thermal-hydraulic effects in the presence of random network induced delay and sensor noise having long range dependence. Energy Convers Manag 68:200–218CrossRef Das S, Pan I, Das S (2013) Fractional order fuzzy control of nuclear reactor power with thermal-hydraulic effects in the presence of random network induced delay and sensor noise having long range dependence. Energy Convers Manag 68:200–218CrossRef
28.
go back to reference Mishra P, Kumar V, Rana K (2015) A fractional order fuzzy PID controller for binary distillation column control. Expert Syst Appl 42(22):8533–8549CrossRef Mishra P, Kumar V, Rana K (2015) A fractional order fuzzy PID controller for binary distillation column control. Expert Syst Appl 42(22):8533–8549CrossRef
29.
go back to reference Kumar V, Rana K, Mishra P (2016) Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J Frankl Inst 353(8):1713–1741MathSciNetMATHCrossRef Kumar V, Rana K, Mishra P (2016) Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J Frankl Inst 353(8):1713–1741MathSciNetMATHCrossRef
30.
go back to reference Araki M, Taguchi H (2003) Two-degree-of-freedom PID controllers. Int J Control Autom Syst 1:401–411 Araki M, Taguchi H (2003) Two-degree-of-freedom PID controllers. Int J Control Autom Syst 1:401–411
31.
go back to reference Sharma R, Gaur P, Mittal A (2015) Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans 58:279–291CrossRef Sharma R, Gaur P, Mittal A (2015) Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans 58:279–291CrossRef
32.
go back to reference Pachauri N, Singh V, Rani A (2017) Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production. ISA Trans 68:235CrossRef Pachauri N, Singh V, Rani A (2017) Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production. ISA Trans 68:235CrossRef
33.
go back to reference Ghosh A, Rakesh Krishnan T, Tejaswy P, Mandal A, Pradhan JK, Ranasingh S (2014) Design and implementation of a 2-DOF PID compensation for magnetic levitation systems. ISA Trans 53(4):1216–1222CrossRef Ghosh A, Rakesh Krishnan T, Tejaswy P, Mandal A, Pradhan JK, Ranasingh S (2014) Design and implementation of a 2-DOF PID compensation for magnetic levitation systems. ISA Trans 53(4):1216–1222CrossRef
34.
go back to reference Debbarma S, Saikia LC, Sinha N (2014) Automatic generation control using two degree of freedom fractional order PID controller. Int J Electr Power Energy Syst 58:120–129CrossRef Debbarma S, Saikia LC, Sinha N (2014) Automatic generation control using two degree of freedom fractional order PID controller. Int J Electr Power Energy Syst 58:120–129CrossRef
35.
go back to reference Li M, Zhou P, Zhao Z, Zhang J (2016) Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans 61:147–154CrossRef Li M, Zhou P, Zhao Z, Zhang J (2016) Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans 61:147–154CrossRef
36.
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef
37.
go back to reference Kumar V, Rana K (2016) Some investigations on hybrid fuzzy IPD controllers for proportional and derivative kick suppression. Int J Autom Comput 13(5):516–528CrossRef Kumar V, Rana K (2016) Some investigations on hybrid fuzzy IPD controllers for proportional and derivative kick suppression. Int J Autom Comput 13(5):516–528CrossRef
38.
go back to reference Lipták BG (2013) Process control: instrument engineers’ handbook. Butterworth-Heinemann, Oxford Lipták BG (2013) Process control: instrument engineers’ handbook. Butterworth-Heinemann, Oxford
39.
go back to reference Gopal M (2002) Control systems: principles and design. Tata McGraw-Hill Education, New York Gopal M (2002) Control systems: principles and design. Tata McGraw-Hill Education, New York
40.
go back to reference Goodrich C, Peterson AC (2016) Discrete fractional calculus. Springer, BerlinMATH Goodrich C, Peterson AC (2016) Discrete fractional calculus. Springer, BerlinMATH
43.
go back to reference Kumar S, Saxena R, Singh K (2017) Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits Syst Signal Process 36(4):1493–1513CrossRef Kumar S, Saxena R, Singh K (2017) Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits Syst Signal Process 36(4):1493–1513CrossRef
44.
go back to reference Tsirimokou G, Psychalinos C, Elwakil A (2017) Current-mode fractional-order filters. In: Gan W-S, Kuo C-CJ, Zheng ThF, Barni M (eds) Design of CMOS analog integrated fractional-order circuits. SpringerBriefs in electrical and computer engineering. Springer, Berlin, pp 41–54CrossRef Tsirimokou G, Psychalinos C, Elwakil A (2017) Current-mode fractional-order filters. In: Gan W-S, Kuo C-CJ, Zheng ThF, Barni M (eds) Design of CMOS analog integrated fractional-order circuits. SpringerBriefs in electrical and computer engineering. Springer, Berlin, pp 41–54CrossRef
45.
go back to reference Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, AmsterdamMATH Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, AmsterdamMATH
47.
go back to reference Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, CambridgeMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, CambridgeMATH
48.
go back to reference Pan I, Das S (2012) Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Int J Electr Power Energy Syst 43(1):393–407CrossRef Pan I, Das S (2012) Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Int J Electr Power Energy Syst 43(1):393–407CrossRef
49.
go back to reference Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404CrossRef Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404CrossRef
50.
go back to reference Ayala HVH, dos Santos Coelho L (2012) Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst Appl 39(10):8968–8974CrossRef Ayala HVH, dos Santos Coelho L (2012) Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst Appl 39(10):8968–8974CrossRef
51.
go back to reference Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M (2017) Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Trans 82:154–160CrossRef Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M (2017) Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Trans 82:154–160CrossRef
52.
go back to reference Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson Prentice Hall, Upper Saddle River Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson Prentice Hall, Upper Saddle River
53.
go back to reference De Wit CC, Praly L (2000) Adaptive eccentricity compensation. IEEE Trans Control Syst Technol 8(5):757–766CrossRef De Wit CC, Praly L (2000) Adaptive eccentricity compensation. IEEE Trans Control Syst Technol 8(5):757–766CrossRef
Metadata
Title
An expert 2DOF fractional order fuzzy PID controller for nonlinear systems
Authors
Vijay Mohan
Himanshu Chhabra
Asha Rani
Vijander Singh
Publication date
17-01-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3330-z

Other articles of this Issue 8/2019

Neural Computing and Applications 8/2019 Go to the issue

Premium Partner