Skip to main content
Top
Published in: Wireless Personal Communications 1/2020

20-01-2020

An Expert Approach for Data Flow Prediction: Case Study of Wireless Sensor Networks

Authors: Jasminder Kaur Sandhu, Anil Kumar Verma, Prashant Singh Rana

Published in: Wireless Personal Communications | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The data flow is an important parameter used in the optimization problem of Wireless Sensor Networks. This paper presents an expert approach for improved data flow prediction based on data discretization and artificial intelligence. The proposed approach has been implemented on various machine learning methods (a total of 17 methods). This data flow prediction is based on the dataset generated from the simulations with NS-2.35 for multiple Wireless Sensor Networks (5- to -50 nodes). The performance comparison of different machine learning models with continuous data and discretized data is also presented. The proposed approach considerably reduces the execution time of the machine learning models for training purposes and also enhances the accuracy of prediction. The result analysis shows that the proposed approach is better compared to various machine learning methods. Also, the proposed approach is able to handle both continuous and discrete data. The datasets used in this work are available as a supplement at NDS and DDS link.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Berka, P., & Bruha, I. (1998). Discretization and grouping: Preprocessing steps for data mining. In European symposium on principles of data mining and knowledge discovery (pp. 239–245). Berlin: Springer Berka, P., & Bruha, I. (1998). Discretization and grouping: Preprocessing steps for data mining. In European symposium on principles of data mining and knowledge discovery (pp. 239–245). Berlin: Springer
2.
go back to reference Shah, S. B., Chen, Z., Yin, F., Khan, I. U., & Niqash, A. (2018). Energy and interoperable aware routing for throughput optimization in clustered iot-wireless sensor networks. Future Generation Computer Systems, 81, 372–381.CrossRef Shah, S. B., Chen, Z., Yin, F., Khan, I. U., & Niqash, A. (2018). Energy and interoperable aware routing for throughput optimization in clustered iot-wireless sensor networks. Future Generation Computer Systems, 81, 372–381.CrossRef
3.
go back to reference Bhushan, B., & Sahoo, G. (2018). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037–2077.CrossRef Bhushan, B., & Sahoo, G. (2018). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037–2077.CrossRef
4.
go back to reference Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer. Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer.
5.
go back to reference Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.CrossRef Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.CrossRef
6.
go back to reference Elghazel, W., Bahi, J., Guyeux, C., Hakem, M., Medjaher, K., & Zerhouni, N. (2015). Dependability of wireless sensor networks for industrial prognostics and health management. Computers in Industry, 68, 1–15.CrossRef Elghazel, W., Bahi, J., Guyeux, C., Hakem, M., Medjaher, K., & Zerhouni, N. (2015). Dependability of wireless sensor networks for industrial prognostics and health management. Computers in Industry, 68, 1–15.CrossRef
7.
go back to reference Sriwanna, K., Boongoen, T., & Iam-On, N. (2017). Graph clustering-based discretization of splitting and merging methods (graphs and graphm). Human-Centric Computing and Information Sciences, 7(1), 21.CrossRef Sriwanna, K., Boongoen, T., & Iam-On, N. (2017). Graph clustering-based discretization of splitting and merging methods (graphs and graphm). Human-Centric Computing and Information Sciences, 7(1), 21.CrossRef
8.
go back to reference Panda, M. (2017). Intelligent data analysis for sustainable smart grids using hybrid classification by genetic algorithm based discretization. Intelligent Decision Technologies, 11(2), 137–151.CrossRef Panda, M. (2017). Intelligent data analysis for sustainable smart grids using hybrid classification by genetic algorithm based discretization. Intelligent Decision Technologies, 11(2), 137–151.CrossRef
9.
go back to reference Gallo, C. A., Cecchini, R. L., Carballido, J. A., Micheletto, S., & Ponzoni, I. (2016). Discretization of gene expression data revised. Briefings in Bioinformatics, 17(5), 758–770.CrossRef Gallo, C. A., Cecchini, R. L., Carballido, J. A., Micheletto, S., & Ponzoni, I. (2016). Discretization of gene expression data revised. Briefings in Bioinformatics, 17(5), 758–770.CrossRef
10.
go back to reference Santoni, D., Weitschek, E., & Felici, G. (2016). Optimal discretization and selection of features by association rates of joint distributions. RAIRO-Operations Research, 50(2), 437–449.MathSciNetMATHCrossRef Santoni, D., Weitschek, E., & Felici, G. (2016). Optimal discretization and selection of features by association rates of joint distributions. RAIRO-Operations Research, 50(2), 437–449.MathSciNetMATHCrossRef
11.
go back to reference Gómez, I., Ribelles, N., Franco, L., Alba, E., & Jerez, J. M. (2016). Supervised discretization can discover risk groups in cancer survival analysis. Computer Methods and Programs in Biomedicine, 136, 11–19.CrossRef Gómez, I., Ribelles, N., Franco, L., Alba, E., & Jerez, J. M. (2016). Supervised discretization can discover risk groups in cancer survival analysis. Computer Methods and Programs in Biomedicine, 136, 11–19.CrossRef
12.
go back to reference Sarkar, S., & Srivastav, A. (2016). A composite discretization scheme for symbolic identification of complex systems. Signal Processing, 125, 156–170.CrossRef Sarkar, S., & Srivastav, A. (2016). A composite discretization scheme for symbolic identification of complex systems. Signal Processing, 125, 156–170.CrossRef
13.
go back to reference Moharir, S., Sanghavi, S., & Shakkottai, S. (2015). Online load balancing under graph constraints. IEEE/ACM Transactions on Networking, 24(3), 1690–1703.CrossRef Moharir, S., Sanghavi, S., & Shakkottai, S. (2015). Online load balancing under graph constraints. IEEE/ACM Transactions on Networking, 24(3), 1690–1703.CrossRef
14.
go back to reference García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Principal components analysis random discretization ensemble for big data. Knowledge-Based Systems, 150, 166–174.CrossRef García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Principal components analysis random discretization ensemble for big data. Knowledge-Based Systems, 150, 166–174.CrossRef
15.
go back to reference Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231–241.CrossRef Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231–241.CrossRef
16.
go back to reference Arnaiz-González, Á., Díez-Pastor, J. F., Rodríguez, J. J., & García-Osorio, C. I. (2016). Instance selection for regression by discretization. Expert Systems with Applications, 54, 340–350.CrossRef Arnaiz-González, Á., Díez-Pastor, J. F., Rodríguez, J. J., & García-Osorio, C. I. (2016). Instance selection for regression by discretization. Expert Systems with Applications, 54, 340–350.CrossRef
17.
go back to reference de Sá, C. R., Soares, C., & Knobbe, A. (2016). Entropy-based discretization methods for ranking data. Information Sciences, 329, 921–936.CrossRef de Sá, C. R., Soares, C., & Knobbe, A. (2016). Entropy-based discretization methods for ranking data. Information Sciences, 329, 921–936.CrossRef
18.
go back to reference Bruni, R., & Bianchi, G. (2015). Effective classification using a small training set based on discretization and statistical analysis. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2349–2361.CrossRef Bruni, R., & Bianchi, G. (2015). Effective classification using a small training set based on discretization and statistical analysis. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2349–2361.CrossRef
19.
go back to reference Jung, S., Bi, Y., & Davuluri, R. V. (2015). Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping. BMC Genomics, 16(11), S3.CrossRef Jung, S., Bi, Y., & Davuluri, R. V. (2015). Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping. BMC Genomics, 16(11), S3.CrossRef
20.
go back to reference Jankowski, C., Reda, D., Mańkowski, M., & Borowik, G. (2015). Discretization of data using boolean transformations and information theory based evaluation criteria. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(4), 923–932.CrossRef Jankowski, C., Reda, D., Mańkowski, M., & Borowik, G. (2015). Discretization of data using boolean transformations and information theory based evaluation criteria. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(4), 923–932.CrossRef
21.
go back to reference Ferreira, A. J., & Figueiredo, M. A. T. (2014). Incremental filter and wrapper approaches for feature discretization. Neurocomputing, 123, 60–74.CrossRef Ferreira, A. J., & Figueiredo, M. A. T. (2014). Incremental filter and wrapper approaches for feature discretization. Neurocomputing, 123, 60–74.CrossRef
22.
go back to reference Sang, Y., Qi, H., Li, K., Jin, Y., Yan, D., & Gao, S. (2014). An effective discretization method for disposing high-dimensional data. Information Sciences, 270, 73–91.MathSciNetMATHCrossRef Sang, Y., Qi, H., Li, K., Jin, Y., Yan, D., & Gao, S. (2014). An effective discretization method for disposing high-dimensional data. Information Sciences, 270, 73–91.MathSciNetMATHCrossRef
23.
go back to reference Cangelosi, D., Muselli, M., Parodi, S., Blengio, F., Becherini, P., Versteeg, R., et al. (2014). Use of attribute driven incremental discretization and logic learning machine to build a prognostic classifier for neuroblastoma patients. BMC Bioinformatics, 15(5), S4.CrossRef Cangelosi, D., Muselli, M., Parodi, S., Blengio, F., Becherini, P., Versteeg, R., et al. (2014). Use of attribute driven incremental discretization and logic learning machine to build a prognostic classifier for neuroblastoma patients. BMC Bioinformatics, 15(5), S4.CrossRef
24.
go back to reference Lustgarten, J. L., Gopalakrishnan, V., Grover, H., & Visweswaran, S. (2008). Improving classification performance with discretization on biomedical datasets. In AMIA annual symposium proceedings (vol. 2008, p. 445). American Medical Informatics Association Lustgarten, J. L., Gopalakrishnan, V., Grover, H., & Visweswaran, S. (2008). Improving classification performance with discretization on biomedical datasets. In AMIA annual symposium proceedings (vol. 2008, p. 445). American Medical Informatics Association
25.
go back to reference Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245–271.MathSciNetMATHCrossRef Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245–271.MathSciNetMATHCrossRef
26.
go back to reference Chmielewski, M. R., & Grzymala-Busse, J. W. (1996). Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning, 15(4), 319–331.MATHCrossRef Chmielewski, M. R., & Grzymala-Busse, J. W. (1996). Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning, 15(4), 319–331.MATHCrossRef
27.
go back to reference Salleb-Aouissi, A., Vrain, C., Nortet, C., Kong, X., Rathod, V., & Cassard, D. (2013). Quantminer for mining quantitative association rules. Journal of Machine Learning Research, 14(1), 3153–3157.MATH Salleb-Aouissi, A., Vrain, C., Nortet, C., Kong, X., Rathod, V., & Cassard, D. (2013). Quantminer for mining quantitative association rules. Journal of Machine Learning Research, 14(1), 3153–3157.MATH
28.
go back to reference Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.MATH Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.MATH
29.
go back to reference Kulakov, A., Davcev, D., & Trajkovski, G. (2005). Implementing artificial neural-networks in wireless sensor networks. In IEEE/Sarnoff symposium on advances in wired and wireless communication (pp. 94–97). IEEE. Kulakov, A., Davcev, D., & Trajkovski, G. (2005). Implementing artificial neural-networks in wireless sensor networks. In IEEE/Sarnoff symposium on advances in wired and wireless communication (pp. 94–97). IEEE.
30.
go back to reference Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
31.
go back to reference Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE international conference on artificial neural networks (pp. 586–591). Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE international conference on artificial neural networks (pp. 586–591).
32.
go back to reference Faraway, J. J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models (Vol. 124). Boca Raton: CRC Press.MATHCrossRef Faraway, J. J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models (Vol. 124). Boca Raton: CRC Press.MATHCrossRef
33.
go back to reference Narayanan, S. J., Bhatt, R. B., & Perumal, B. (2016). Improving the accuracy of fuzzy decision tree by direct back propagation with adaptive learning rate and momentum factor for user localization. Procedia Computer Science, 89, 506–513.CrossRef Narayanan, S. J., Bhatt, R. B., & Perumal, B. (2016). Improving the accuracy of fuzzy decision tree by direct back propagation with adaptive learning rate and momentum factor for user localization. Procedia Computer Science, 89, 506–513.CrossRef
34.
go back to reference Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1(Oct), 49–75.MATH Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1(Oct), 49–75.MATH
36.
go back to reference Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 809–821.MathSciNetCrossRef Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 809–821.MathSciNetCrossRef
37.
go back to reference Liu, D., & Fan, S. (2014). A modified decision tree algorithm based on genetic algorithm for mobile user classification problem. The Scientific World Journal, 2014(1), 1–11. Liu, D., & Fan, S. (2014). A modified decision tree algorithm based on genetic algorithm for mobile user classification problem. The Scientific World Journal, 2014(1), 1–11.
38.
go back to reference Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.MATH Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.MATH
39.
go back to reference Gan, T. Y., Kalinga, O., & Singh, P. (2009). Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions. Remote Sensing of Environment, 113(5), 919–927.CrossRef Gan, T. Y., Kalinga, O., & Singh, P. (2009). Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions. Remote Sensing of Environment, 113(5), 919–927.CrossRef
40.
go back to reference Ticknor, J. L. (2013). A bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506.CrossRef Ticknor, J. L. (2013). A bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506.CrossRef
41.
go back to reference Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. The Journal of Machine Learning Research, 16(1), 3905–3909.MathSciNetMATH Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. The Journal of Machine Learning Research, 16(1), 3905–3909.MathSciNetMATH
42.
go back to reference Jagannathan, R. (2016). A linear regression approach for determining explicit expressions for option prices for equity option pricing models with dependent volatility and return processes. Journal of Mathematical Finance, 6(02), 303.CrossRef Jagannathan, R. (2016). A linear regression approach for determining explicit expressions for option prices for equity option pricing models with dependent volatility and return processes. Journal of Mathematical Finance, 6(02), 303.CrossRef
43.
go back to reference Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (1998). Data mining and knowledge discovery. In Data mining methods for knowledge discovery (pp. 1–26). Boston: Springer.MATHCrossRef Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (1998). Data mining and knowledge discovery. In Data mining methods for knowledge discovery (pp. 1–26). Boston: Springer.MATHCrossRef
44.
go back to reference Mannor, S., & Meir, R. (2002). On the existence of linear weak learners and applications to boosting. Machine Learning, 48(1–3), 219–251.MATHCrossRef Mannor, S., & Meir, R. (2002). On the existence of linear weak learners and applications to boosting. Machine Learning, 48(1–3), 219–251.MATHCrossRef
45.
go back to reference Baadache, A., & Belmehdi, A. (2012). Fighting against packet dropping misbehavior in multi-hop wireless ad hoc networks. Journal of Network and Computer Applications, 35(3), 1130–1139.CrossRef Baadache, A., & Belmehdi, A. (2012). Fighting against packet dropping misbehavior in multi-hop wireless ad hoc networks. Journal of Network and Computer Applications, 35(3), 1130–1139.CrossRef
46.
go back to reference Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.CrossRef Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.CrossRef
Metadata
Title
An Expert Approach for Data Flow Prediction: Case Study of Wireless Sensor Networks
Authors
Jasminder Kaur Sandhu
Anil Kumar Verma
Prashant Singh Rana
Publication date
20-01-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07028-4

Other articles of this Issue 1/2020

Wireless Personal Communications 1/2020 Go to the issue