Skip to main content
Top
Published in: Wireless Personal Communications 3/2023

01-06-2023

An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms

Authors: Renugadevi Ammapalayam Sinnaswamy, Natesan Palanisamy, Kavitha Subramaniam, Suresh Muthusamy, Ravita Lamba, Sreejith Sekaran

Published in: Wireless Personal Communications | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aneurysm (Rupture of blood vessels) may happen in the cerebrum, abdominal aorta and thoracic aorta of humans, which has a high fatal rate. The advancement of the artificial technologies specifically machine learning algorithms and deep learning models have attempted to predict the aneurysm, which may reduce the death rate. The main objective of this paper is to provide the review of various algorithms and models for the early prediction of the various types of aneurysms. The focused literature review was conducted from the preferred journals from 2007 to 2022 on various parameters such as way of collecting images, the techniques used, number of images used in data set, performance metrics and future work. The summarized overview of advances in prediction of aneurysms using the machine learning algorithms from non linear kernel support regression algorithm to 3D Unet architecture of deep learning models starting from CT scan images to final performance analysis in prediction. The range of sensitivity, specificity and area under receiving operating characteristic was from 0. 7 to 1 for the abdominal aortic aneurysm detection, intracranial aneurysm detection. The thoracic aortic aneurysm was not concentrated much in the literature review, so the prediction of thoracic aortic aneurysm using machine learning as well as deep learning model is recommended.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, S. W., Huang, Y. B., Huang, J. W., Chiu, C. C., Lai, W. T., & Chen, C. Y. (2015). Epidemiology, clinical features, and prescribing patterns of aortic aneurysm in Asian population from 2005 to 2011. Medicine, 94(41), e1716. Wang, S. W., Huang, Y. B., Huang, J. W., Chiu, C. C., Lai, W. T., & Chen, C. Y. (2015). Epidemiology, clinical features, and prescribing patterns of aortic aneurysm in Asian population from 2005 to 2011. Medicine, 94(41), e1716.
2.
go back to reference Sidloff, D., Stather, P., Dattani, N., Bown, M., Thompson, J., Sayers, R., & Choke, E. (2014). Aneurysm global epidemiology study: public health measures can further reduce abdominal aortic aneurysm mortality. Circulation, 129(7), 747–753. Sidloff, D., Stather, P., Dattani, N., Bown, M., Thompson, J., Sayers, R., & Choke, E. (2014). Aneurysm global epidemiology study: public health measures can further reduce abdominal aortic aneurysm mortality. Circulation, 129(7), 747–753.
3.
go back to reference Hartnell, G. G. (2001). Imaging of aortic aneurysms and dissection: CT and MRI. Journal of Thoracic Imaging, 16(1), 35–46. Hartnell, G. G. (2001). Imaging of aortic aneurysms and dissection: CT and MRI. Journal of Thoracic Imaging, 16(1), 35–46.
6.
go back to reference Shanthi, S., Aruljyothi, L., Balasundaram, M. B., Janakiraman, A., Nirmaladevi, K., & Pyingkodi, M. (2022). Artificial intelligence applications in different imaging modalities for corneal topography. Survey of Ophthalmology, 67(3), 801–816. Shanthi, S., Aruljyothi, L., Balasundaram, M. B., Janakiraman, A., Nirmaladevi, K., & Pyingkodi, M. (2022). Artificial intelligence applications in different imaging modalities for corneal topography. Survey of Ophthalmology, 67(3), 801–816.
7.
go back to reference Perumal, S., & Velmurugan, T. (2018). Preprocessing by contrast enhancement techniques for medical images. International Journal of Pure and Applied Mathematics, 118(18), 3681–3688. Perumal, S., & Velmurugan, T. (2018). Preprocessing by contrast enhancement techniques for medical images. International Journal of Pure and Applied Mathematics, 118(18), 3681–3688.
9.
go back to reference Rajalaxmi, R. R., Natesan, P., Krishnamoorthy, N., & Ponni, S. (2019). Regression model for predicting engineering students academic performance. International Journal of Recent Technology and Engineering, 7(6S3), 71–75. Rajalaxmi, R. R., Natesan, P., Krishnamoorthy, N., & Ponni, S. (2019). Regression model for predicting engineering students academic performance. International Journal of Recent Technology and Engineering, 7(6S3), 71–75.
11.
go back to reference Novakovic, J. D., Veljovic, A., Ilic, S. S., Papic, Z., & Tomovic, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics and Computer Science, 7(1), 39–46.MathSciNet Novakovic, J. D., Veljovic, A., Ilic, S. S., Papic, Z., & Tomovic, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics and Computer Science, 7(1), 39–46.MathSciNet
12.
go back to reference Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065.
13.
go back to reference Lee, R., Jarchi, D., Perera, R., Jones, A., Cassimjee, I., Handa, A., Clifton, D. A., Bellamkonda, K., Woodgate, F., Killough, N., & Maistry, N. (2018). Applied machine learning for the prediction of growth of abdominal aortic aneurysm in humans. EJVES Short Reports, 39, 24–28. Lee, R., Jarchi, D., Perera, R., Jones, A., Cassimjee, I., Handa, A., Clifton, D. A., Bellamkonda, K., Woodgate, F., Killough, N., & Maistry, N. (2018). Applied machine learning for the prediction of growth of abdominal aortic aneurysm in humans. EJVES Short Reports, 39, 24–28.
14.
go back to reference Wang, T., Jin, W., Liang, F., & Alastruey, J. (2021). Machine learning-based pulse wave analysis for early detection of abdominal aortic aneurysms using in silico pulse waves. Symmetry, 13(5), 804. Wang, T., Jin, W., Liang, F., & Alastruey, J. (2021). Machine learning-based pulse wave analysis for early detection of abdominal aortic aneurysms using in silico pulse waves. Symmetry, 13(5), 804.
15.
go back to reference Lindquist Liljeqvist, M., Bogdanovic, M., Siika, A., Gasser, T. C., Hultgren, R., & Roy, J. (2021). Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Scientific Reports, 11(1), 1–10. Lindquist Liljeqvist, M., Bogdanovic, M., Siika, A., Gasser, T. C., Hultgren, R., & Roy, J. (2021). Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Scientific Reports, 11(1), 1–10.
16.
go back to reference Shum, J., Di Martino, E. S., Muluk, S. C., & Finol, E. A. (2011). Machine learning techniques for the assessment of AAA rupture risk. ASME, 54587, 71–77. Shum, J., Di Martino, E. S., Muluk, S. C., & Finol, E. A. (2011). Machine learning techniques for the assessment of AAA rupture risk. ASME, 54587, 71–77.
17.
go back to reference Lu, J. T., Brooks, R., Hahn, S., Chen, J., Buch, V., Kotecha, G., Andriole, K. P., Ghoshhajra, B., Pinto, J., Vozila, P. and Michalski, M. (2019). DeepAAA: Clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. arXiv:1907.02567v Lu, J. T., Brooks, R., Hahn, S., Chen, J., Buch, V., Kotecha, G., Andriole, K. P., Ghoshhajra, B., Pinto, J., Vozila, P. and Michalski, M. (2019). DeepAAA: Clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. arXiv:​1907.​02567v
18.
go back to reference Hong, H. A. & Sheikh, U. U. (2016). Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning. Universiti Teknologi Repository Hong, H. A. & Sheikh, U. U. (2016). Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning. Universiti Teknologi Repository
19.
go back to reference Jiang, Z., Do, H. N., Choi, J., Lee, W., & Baek, S. (2020). A deep learning approach to predict abdominal aortic aneurysm expansion using longitudinal data. Frontiers in Physics, 7, 235. Jiang, Z., Do, H. N., Choi, J., Lee, W., & Baek, S. (2020). A deep learning approach to predict abdominal aortic aneurysm expansion using longitudinal data. Frontiers in Physics, 7, 235.
20.
go back to reference Golla, A. K., Tönnes, C., Russ, T., Bauer, D. F., Froelich, M. F., Diehl, S. J., Schoenberg, S. O., Keese, M., Schad, L. R., Zöllner, F. G., & Rink, J. S. (2021). Automated screening for abdominal aortic aneurysm in CT scans under clinical conditions using deep learning. Diagnostics, 11(11), 2131. Golla, A. K., Tönnes, C., Russ, T., Bauer, D. F., Froelich, M. F., Diehl, S. J., Schoenberg, S. O., Keese, M., Schad, L. R., Zöllner, F. G., & Rink, J. S. (2021). Automated screening for abdominal aortic aneurysm in CT scans under clinical conditions using deep learning. Diagnostics, 11(11), 2131.
21.
go back to reference Heo, J., Park, S. J., Kang, S. H., Oh, C. W., Bang, J. S., & Kim, T. (2020). Prediction of intracranial aneurysm risk using machine learning. Scientific reports, 10(1), 1–10. Heo, J., Park, S. J., Kang, S. H., Oh, C. W., Bang, J. S., & Kim, T. (2020). Prediction of intracranial aneurysm risk using machine learning. Scientific reports, 10(1), 1–10.
22.
go back to reference Kim, H. C., Rhim, J. K., Ahn, J. H., Park, J. J., Moon, J. U., Hong, E. P., Kim, M. R., Kim, S. G., Lee, S. H., Jeong, J. H., & Choi, S. W. (2019). Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. Journal of clinical medicine, 8(5), 683. Kim, H. C., Rhim, J. K., Ahn, J. H., Park, J. J., Moon, J. U., Hong, E. P., Kim, M. R., Kim, S. G., Lee, S. H., Jeong, J. H., & Choi, S. W. (2019). Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. Journal of clinical medicine, 8(5), 683.
23.
go back to reference Shi, Z., Miao, C., Schoepf, U. J., Savage, R. H., Dargis, D. M., Pan, C., Chai, X., Li, X. L., Xia, S., Zhang, X., & Gu, Y. (2020). A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nature communications, 11(1), 6090. Shi, Z., Miao, C., Schoepf, U. J., Savage, R. H., Dargis, D. M., Pan, C., Chai, X., Li, X. L., Xia, S., Zhang, X., & Gu, Y. (2020). A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nature communications, 11(1), 6090.
24.
go back to reference Park, A., Chute, C., Rajpurkar, P., Lou, J., Ball, R. L., Shpanskaya, K., Jabarkheel, R., Kim, L. H., McKenna, E., Tseng, J., & Ni, J. (2019). Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA network open, 2(6), e195600–e195600. Park, A., Chute, C., Rajpurkar, P., Lou, J., Ball, R. L., Shpanskaya, K., Jabarkheel, R., Kim, L. H., McKenna, E., Tseng, J., & Ni, J. (2019). Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA network open, 2(6), e195600–e195600.
25.
go back to reference Comelli, A., Dahiya, N., Stefano, A., Benfante, V., Gentile, G., Agnese, V., Raffa, G. M., Pilato, M., Yezzi, A., Petrucci, G., & Pasta, S. (2021). Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomedical Engineering Letters, 11, 15–24. Comelli, A., Dahiya, N., Stefano, A., Benfante, V., Gentile, G., Agnese, V., Raffa, G. M., Pilato, M., Yezzi, A., Petrucci, G., & Pasta, S. (2021). Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomedical Engineering Letters, 11, 15–24.
26.
go back to reference Ueda, D., Yamamoto, A., Nishimori, M., Shimono, T., Doishita, S., Shimazaki, A., Katayama, Y., Fukumoto, S., Choppin, A., Shimahara, Y., & Miki, Y. (2019). Deep learning for MR angiography: Automated detection of cerebral aneurysms. Radiology, 290(1), 187–194. Ueda, D., Yamamoto, A., Nishimori, M., Shimono, T., Doishita, S., Shimazaki, A., Katayama, Y., Fukumoto, S., Choppin, A., Shimahara, Y., & Miki, Y. (2019). Deep learning for MR angiography: Automated detection of cerebral aneurysms. Radiology, 290(1), 187–194.
27.
go back to reference Sichtermann, T., Faron, A., Sijben, R., Teichert, N., Freiherr, J., & Wiesmann, M. (2019). Deep learning–based detection of intracranial aneurysms in 3D TOF-MRA. American Journal of Neuroradiology, 40(1), 25–32. Sichtermann, T., Faron, A., Sijben, R., Teichert, N., Freiherr, J., & Wiesmann, M. (2019). Deep learning–based detection of intracranial aneurysms in 3D TOF-MRA. American Journal of Neuroradiology, 40(1), 25–32.
28.
go back to reference Chabert, S., Mardones, T., Riveros, R., Godoy, M., Veloz, A., Salas, R., & Cox, P. (2017). Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Research Ideas and Outcomes, 3, e1173. Chabert, S., Mardones, T., Riveros, R., Godoy, M., Veloz, A., Salas, R., & Cox, P. (2017). Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Research Ideas and Outcomes, 3, e1173.
29.
go back to reference Yang, H., Cho, K. C., Kim, J. J., Kim, J. H., Kim, Y. B., & Oh, J. H. (2023). Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model. Journal of NeuroInterventional Surgery, 15(2), 200–204. Yang, H., Cho, K. C., Kim, J. J., Kim, J. H., Kim, Y. B., & Oh, J. H. (2023). Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model. Journal of NeuroInterventional Surgery, 15(2), 200–204.
30.
go back to reference Meng, C., Yang, D., & Chen, D. (2021). Cerebral aneurysm image segmentation based on multi-modal convolutional neural network. Computer Methods and Programs in Biomedicine, 208, 106285. Meng, C., Yang, D., & Chen, D. (2021). Cerebral aneurysm image segmentation based on multi-modal convolutional neural network. Computer Methods and Programs in Biomedicine, 208, 106285.
31.
go back to reference Ahn, J. H., Kim, H. C., Rhim, J. K., Park, J. J., Sigmund, D., Park, M. C., Jeong, J. H., & Jeon, J. P. (2021). Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms. Journal of Personalized Medicine, 11(4), 239. Ahn, J. H., Kim, H. C., Rhim, J. K., Park, J. J., Sigmund, D., Park, M. C., Jeong, J. H., & Jeon, J. P. (2021). Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms. Journal of Personalized Medicine, 11(4), 239.
32.
go back to reference Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15. Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15.
33.
go back to reference Marasini, A., Shrestha, A., Phuyal, S., Zaidat, O. O., & Kalia, J. S. (2022). Role of artificial intelligence in unruptured intracranial aneurysm: An overview. Frontiers in Neurology, 13, 22. Marasini, A., Shrestha, A., Phuyal, S., Zaidat, O. O., & Kalia, J. S. (2022). Role of artificial intelligence in unruptured intracranial aneurysm: An overview. Frontiers in Neurology, 13, 22.
34.
go back to reference Tanioka, S., Ishida, F., Yamamoto, A., Shimizu, S., Sakaida, H., Toyoda, M., Kashiwagi, N., & Suzuki, H. (2019). Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology: Artificial Intelligence, 2(1), e190077. Tanioka, S., Ishida, F., Yamamoto, A., Shimizu, S., Sakaida, H., Toyoda, M., Kashiwagi, N., & Suzuki, H. (2019). Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology: Artificial Intelligence, 2(1), e190077.
35.
go back to reference Ou, C., Liu, J., Qian, Y., Chong, W., Zhang, X., Liu, W., Su, H., Zhang, N., Zhang, J., Duan, C. Z., & He, X. (2020). Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data. Frontiers in Neurology, 11, 570181. Ou, C., Liu, J., Qian, Y., Chong, W., Zhang, X., Liu, W., Su, H., Zhang, N., Zhang, J., Duan, C. Z., & He, X. (2020). Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data. Frontiers in Neurology, 11, 570181.
36.
go back to reference Shi, Z., Chen, G. Z., Mao, L., Li, X. L., Zhou, C. S., Xia, S., Zhang, Y. X., Zhang, B., Hu, B., Lu, G. M., & Zhang, L. J. (2021). Machine learning–based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: A multicenter study. American Journal of Neuroradiology, 42(4), 648–654. Shi, Z., Chen, G. Z., Mao, L., Li, X. L., Zhou, C. S., Xia, S., Zhang, Y. X., Zhang, B., Hu, B., Lu, G. M., & Zhang, L. J. (2021). Machine learning–based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: A multicenter study. American Journal of Neuroradiology, 42(4), 648–654.
38.
go back to reference Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516.
39.
go back to reference Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in medical image analysis. IEEE Access, 6, 9375–9389. Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in medical image analysis. IEEE Access, 6, 9375–9389.
41.
go back to reference Mohammadi, S., Mohammadi, M., Dehlaghi, V., & Ahmadi, A. (2019). Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm. Cardiovascular Engineering and Technology, 10, 490–499. Mohammadi, S., Mohammadi, M., Dehlaghi, V., & Ahmadi, A. (2019). Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm. Cardiovascular Engineering and Technology, 10, 490–499.
42.
go back to reference Hahn, S., Perry, M., Morris, C. S., Wshah, S., & Bertges, D. J. (2020). Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS-Vascular Science, 1, 5–12. Hahn, S., Perry, M., Morris, C. S., Wshah, S., & Bertges, D. J. (2020). Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS-Vascular Science, 1, 5–12.
43.
go back to reference Liang, L., Liu, M., Martin, C., Elefteriades, J. A., & Sun, W. (2017). A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in Mechanobiology, 16, 1519–1533. Liang, L., Liu, M., Martin, C., Elefteriades, J. A., & Sun, W. (2017). A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in Mechanobiology, 16, 1519–1533.
44.
go back to reference López-Linares, K., Aranjuelo, N., Kabongo, L., Maclair, G., Lete, N., Ceresa, M., García-Familiar, A., Macía, I., & Ballester, M. A. G. (2018). Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Medical image analysis, 46, 202–214. López-Linares, K., Aranjuelo, N., Kabongo, L., Maclair, G., Lete, N., Ceresa, M., García-Familiar, A., Macía, I., & Ballester, M. A. G. (2018). Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Medical image analysis, 46, 202–214.
45.
go back to reference Wang, G. X., Zhang, D., Wang, Z. P., Yang, L. Q., Zhang, L., & Wen, L. (2016). Risk factors for the rupture of bifurcation intracranial aneurysms using CT angiography. Yonsei Medical Journal, 57(5), 1178–1184. Wang, G. X., Zhang, D., Wang, Z. P., Yang, L. Q., Zhang, L., & Wen, L. (2016). Risk factors for the rupture of bifurcation intracranial aneurysms using CT angiography. Yonsei Medical Journal, 57(5), 1178–1184.
46.
go back to reference Hwang, B., Kim, J., Lee, S., Kim, E., Kim, J., Jung, Y., & Hwang, H. (2022). Automatic detection and segmentation of thrombi in abdominal aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors, 22(10), 3643. Hwang, B., Kim, J., Lee, S., Kim, E., Kim, J., Jung, Y., & Hwang, H. (2022). Automatic detection and segmentation of thrombi in abdominal aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors, 22(10), 3643.
47.
go back to reference Jordanski, M., Radovic, M., Milosevic, Z., Filipovic, N., & Obradovic, Z. (2016). Machine learning approach for predicting wall shear distribution for abdominal aortic aneurysm and carotid bifurcation models. IEEE Journal of Biomedical and Health Informatics, 22(2), 537–544. Jordanski, M., Radovic, M., Milosevic, Z., Filipovic, N., & Obradovic, Z. (2016). Machine learning approach for predicting wall shear distribution for abdominal aortic aneurysm and carotid bifurcation models. IEEE Journal of Biomedical and Health Informatics, 22(2), 537–544.
48.
go back to reference Lareyre, F., Adam, C., Carrier, M., & Raffort, J. (2020). Prediction of abdominal aortic aneurysm growth and risk of rupture in the era of machine learning. Angiology, 71(8), 767–767. Lareyre, F., Adam, C., Carrier, M., & Raffort, J. (2020). Prediction of abdominal aortic aneurysm growth and risk of rupture in the era of machine learning. Angiology, 71(8), 767–767.
49.
go back to reference Lareyre, F., Adam, C., Carrier, M., Dommerc, C., Mialhe, C., & Raffort, J. (2019). A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Scientific Reports, 9(1), 13750. Lareyre, F., Adam, C., Carrier, M., Dommerc, C., Mialhe, C., & Raffort, J. (2019). A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Scientific Reports, 9(1), 13750.
50.
go back to reference Hirata, K., Nakaura, T., Nakagawa, M., Kidoh, M., Oda, S., Utsunomiya, D., & Yamashita, Y. (2020). Machine learning to predict the rapid growth of small abdominal aortic aneurysm. Journal of Computer Assisted Tomography, 44(1), 37–42. Hirata, K., Nakaura, T., Nakagawa, M., Kidoh, M., Oda, S., Utsunomiya, D., & Yamashita, Y. (2020). Machine learning to predict the rapid growth of small abdominal aortic aneurysm. Journal of Computer Assisted Tomography, 44(1), 37–42.
51.
go back to reference Rigante, L., Boogaarts, H. D., Bartels, R. H., Vart, P., Aquarius, R., Grotenhuis, J. A., Moudrous, W., De Korte, A. M., & de Vries, J. (2021). Factors associated with subsequent subarachnoid hemorrhages in patients with multiple intracranial aneurysms. World neurosurgery, 154, e185–e198. Rigante, L., Boogaarts, H. D., Bartels, R. H., Vart, P., Aquarius, R., Grotenhuis, J. A., Moudrous, W., De Korte, A. M., & de Vries, J. (2021). Factors associated with subsequent subarachnoid hemorrhages in patients with multiple intracranial aneurysms. World neurosurgery, 154, e185–e198.
52.
go back to reference Xin-Wei et al. (2022). Detection and analysis of cerebral aneurysms based on X-ray rotational angiography—the CADA 2020 challenge European Journal of Radiology Xin-Wei et al. (2022). Detection and analysis of cerebral aneurysms based on X-ray rotational angiography—the CADA 2020 challenge European Journal of Radiology
53.
go back to reference Zhu, G., Luo, X., Yang, T., Cai, L., Yeo, J. H., Yan, G., & Yang, J. (2022). Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Frontiers in Physiology, 13, 1–16. Zhu, G., Luo, X., Yang, T., Cai, L., Yeo, J. H., Yan, G., & Yang, J. (2022). Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Frontiers in Physiology, 13, 1–16.
54.
go back to reference Di Noto, T., Marie, G., Tourbier, S., Alemán-Gómez, Y., Esteban, O., Saliou, G., Cuadra, M. B., Hagmann, P., & Richiardi, J. (2023). Towards automated brain aneurysm detection in TOF-MRA: Open data, weak labels, and anatomical knowledge. Neuroinformatics, 21(1), 21–34. Di Noto, T., Marie, G., Tourbier, S., Alemán-Gómez, Y., Esteban, O., Saliou, G., Cuadra, M. B., Hagmann, P., & Richiardi, J. (2023). Towards automated brain aneurysm detection in TOF-MRA: Open data, weak labels, and anatomical knowledge. Neuroinformatics, 21(1), 21–34.
55.
go back to reference Yuan, W., Peng, Y., Guo, Y., Ren, Y., & Xue, Q. (2022). DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry, Biomedicine, and Art, 5, 9. Yuan, W., Peng, Y., Guo, Y., Ren, Y., & Xue, Q. (2022). DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry, Biomedicine, and Art, 5, 9.
56.
go back to reference Chen, G., Lu, M., Shi, Z., Xia, S., Ren, Y., Liu, Z., Liu, X., Li, Z., Mao, L., Li, X. L., & Zhang, B. (2020). Development and validation of machine learning prediction model based on computed tomography angiography–derived hemodynamics for rupture status of intracranial aneurysms: A Chinese multicenter study. European radiology, 30, 5170–5182. Chen, G., Lu, M., Shi, Z., Xia, S., Ren, Y., Liu, Z., Liu, X., Li, Z., Mao, L., Li, X. L., & Zhang, B. (2020). Development and validation of machine learning prediction model based on computed tomography angiography–derived hemodynamics for rupture status of intracranial aneurysms: A Chinese multicenter study. European radiology, 30, 5170–5182.
57.
go back to reference Macruz, F. B. C., Lu, C., Strout, J., Takigami, A., Brooks, R., Doyle, S., Yun, M., Buch, V., Hedgire, S., & Ghoshhajra, B. (2022). Quantification of the thoracic aorta and detection of aneurysm at CT: Development and validation of a fully automatic methodology. Radiology: Artificial Intelligence, 4(2), e210076–e210076. Macruz, F. B. C., Lu, C., Strout, J., Takigami, A., Brooks, R., Doyle, S., Yun, M., Buch, V., Hedgire, S., & Ghoshhajra, B. (2022). Quantification of the thoracic aorta and detection of aneurysm at CT: Development and validation of a fully automatic methodology. Radiology: Artificial Intelligence, 4(2), e210076–e210076.
58.
go back to reference Cavalcanti, A., Shirinzadeh, B., Fukuda, T., & Ikeda, S. (2007). Hardware architecture for nanorobot application in cerebral aneurysm. 2007 7th IEEE conference on nanotechnology (IEEE NANO) Cavalcanti, A., Shirinzadeh, B., Fukuda, T., & Ikeda, S. (2007). Hardware architecture for nanorobot application in cerebral aneurysm. 2007 7th IEEE conference on nanotechnology (IEEE NANO)
59.
go back to reference Bhadri, P. R., Kumar, S. A., Salgaonkar, V. A., Beyette, F. R., & Clark, J. F. (2008). Development of an integrated hardware and software platform for the rapid detection of cerebral aneurysm rupture. Analog Integrated Circuits and Signal Processing, 56, 127–134. Bhadri, P. R., Kumar, S. A., Salgaonkar, V. A., Beyette, F. R., & Clark, J. F. (2008). Development of an integrated hardware and software platform for the rapid detection of cerebral aneurysm rupture. Analog Integrated Circuits and Signal Processing, 56, 127–134.
61.
go back to reference Toth, G., & Cerejo, R. (2018). Intracranial aneurysms: Review of current science and management. Vascular Medicine, 23(3), 276–288. Toth, G., & Cerejo, R. (2018). Intracranial aneurysms: Review of current science and management. Vascular Medicine, 23(3), 276–288.
62.
go back to reference Liu, J., Chen, Y., Lan, L., Lin, B., Chen, W., Wang, M., & Duan, Y. (2018). Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. European radiology, 28, 3268–3275. Liu, J., Chen, Y., Lan, L., Lin, B., Chen, W., Wang, M., & Duan, Y. (2018). Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. European radiology, 28, 3268–3275.
63.
go back to reference Zhang, X. J., Gao, B. L., Hao, W. L., Wu, S. S., & Zhang, D. H. (2018). Presence of anterior communicating artery aneurysm is associated with age, bifurcation angle, and vessel diameter. Stroke, 49(2), 341–347. Zhang, X. J., Gao, B. L., Hao, W. L., Wu, S. S., & Zhang, D. H. (2018). Presence of anterior communicating artery aneurysm is associated with age, bifurcation angle, and vessel diameter. Stroke, 49(2), 341–347.
64.
go back to reference Lee, R., Bellamkonda, K., Jones, A., Killough, N., Woodgate, F., Williams, M., Cassimjee, I., Handa, A., Antonopoulos, A., Antoniades, C., & Channon, K. M. (2017). Flow mediated dilatation and progression of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 53(6), 820–829. Lee, R., Bellamkonda, K., Jones, A., Killough, N., Woodgate, F., Williams, M., Cassimjee, I., Handa, A., Antonopoulos, A., Antoniades, C., & Channon, K. M. (2017). Flow mediated dilatation and progression of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 53(6), 820–829.
Metadata
Title
An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
Authors
Renugadevi Ammapalayam Sinnaswamy
Natesan Palanisamy
Kavitha Subramaniam
Suresh Muthusamy
Ravita Lamba
Sreejith Sekaran
Publication date
01-06-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10532-y

Other articles of this Issue 3/2023

Wireless Personal Communications 3/2023 Go to the issue