Skip to main content
Top

20-05-2024 | Research Paper

An improved algorithm for solving the Weber location problem

Author: Zvi Drezner

Published in: 4OR

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this note we propose an improved algorithm for the solution of the Weber problem which is the most fundamental problem in location analysis. It is used as a building block in many algorithms for solving more complicated location problems. The algorithm is very simple to implement and the idea behind it can inspire solution approaches to other optimization problems as well. Computational experiments demonstrated the superior performance of the proposed algorithm. Such an improvement will assist in the solution of more complicated models that apply the solution to Weber problem repeatedly many times as part of their solution algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Brimberg J, Drezner Z (2013) A new heuristic for solving the \(p\)-median problem in the plane. Comput Oper Res 40:427–437CrossRef Brimberg J, Drezner Z (2013) A new heuristic for solving the \(p\)-median problem in the plane. Comput Oper Res 40:427–437CrossRef
go back to reference Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with \(l_p\) distances. Oper Res 41:1153–1163CrossRef Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with \(l_p\) distances. Oper Res 41:1153–1163CrossRef
go back to reference Brimberg J, Hansen P, Mladenović N, Taillard E (2000) Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper Res 48:444–460CrossRef Brimberg J, Hansen P, Mladenović N, Taillard E (2000) Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper Res 48:444–460CrossRef
go back to reference Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location problems. Eur J Oper Res 232:256–265CrossRef Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location problems. Eur J Oper Res 232:256–265CrossRef
go back to reference Brimberg J, Hansen P, Mladonovic N, Salhi S (2008) A survey of solution methods for the continuous location allocation problem. Int J Oper Res 5:1–12 Brimberg J, Hansen P, Mladonovic N, Salhi S (2008) A survey of solution methods for the continuous location allocation problem. Int J Oper Res 5:1–12
go back to reference Church RL (2019) Understanding the Weber location paradigm. In: Eiselt HA, Marianov V (eds) Contributions to location analysis—in honor of Zvi Drezner’s 75th birthday. Springer, Switzerland, pp 69–88 Church RL (2019) Understanding the Weber location paradigm. In: Eiselt HA, Marianov V (eds) Contributions to location analysis—in honor of Zvi Drezner’s 75th birthday. Springer, Switzerland, pp 69–88
go back to reference Cooper L (1964) Heuristic methods for location-allocation problems. SIAM Rev 6:37–53CrossRef Cooper L (1964) Heuristic methods for location-allocation problems. SIAM Rev 6:37–53CrossRef
go back to reference Drezner Z (1992) A note on the Weber location problem. Ann Oper Res 40:153–161CrossRef Drezner Z (1992) A note on the Weber location problem. Ann Oper Res 40:153–161CrossRef
go back to reference Drezner Z (1996) A note on accelerating the Weiszfeld procedure. Locat Sci 3:275–279CrossRef Drezner Z (1996) A note on accelerating the Weiszfeld procedure. Locat Sci 3:275–279CrossRef
go back to reference Drezner Z (2015) The fortified Weiszfeld algorithm for solving the Weber problem. IMA J Manag Math 26:1–9 Drezner Z (2015) The fortified Weiszfeld algorithm for solving the Weber problem. IMA J Manag Math 26:1–9
go back to reference Drezner Z, Simchi-Levi D (1992) Asymptotic behavior of the Weber location problem on the plane. Ann Oper Res 40:163–172CrossRef Drezner Z, Simchi-Levi D (1992) Asymptotic behavior of the Weber location problem on the plane. Ann Oper Res 40:163–172CrossRef
go back to reference Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber problem. In: Drezner Z, Hamacher HW (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36CrossRef Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber problem. In: Drezner Z, Hamacher HW (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36CrossRef
go back to reference Francis RL, McGinnis LF Jr, White JA (1992) Facility layout and location: an analytical approach, 2nd edn. Prentice Hall, Englewood Cliffs Francis RL, McGinnis LF Jr, White JA (1992) Facility layout and location: an analytical approach, 2nd edn. Prentice Hall, Englewood Cliffs
go back to reference Hansen P, Mladenović N, Taillard É (1998) Heuristic solution of the multisource Weber problem as a \(p\)-median problem. Oper Res Lett 22:55–62CrossRef Hansen P, Mladenović N, Taillard É (1998) Heuristic solution of the multisource Weber problem as a \(p\)-median problem. Oper Res Lett 22:55–62CrossRef
go back to reference Katz IN (1969) On the convergence of a numerical scheme for solving some locational equilibrium problems. SIAM J Appl Math 17:1224–1231CrossRef Katz IN (1969) On the convergence of a numerical scheme for solving some locational equilibrium problems. SIAM J Appl Math 17:1224–1231CrossRef
go back to reference Katz IN (1974) Local convergence in Fermat’s problem. Math Program 6:89–104CrossRef Katz IN (1974) Local convergence in Fermat’s problem. Math Program 6:89–104CrossRef
go back to reference Krarup J, Vajda S (1997) On Torricelli’s geometrical solution to a problem of Fermat. IMA J Manag Math 8:215–224 Krarup J, Vajda S (1997) On Torricelli’s geometrical solution to a problem of Fermat. IMA J Manag Math 8:215–224
go back to reference Kuenne RE, Soland RM (1972) Exact and approximate solutions to the multisource Weber problem. Math Program 3:193–209CrossRef Kuenne RE, Soland RM (1972) Exact and approximate solutions to the multisource Weber problem. Math Program 3:193–209CrossRef
go back to reference Kuhn HW (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Nonlinear programming. North-Holland, Amsterdam, pp 38–45 Kuhn HW (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Nonlinear programming. North-Holland, Amsterdam, pp 38–45
go back to reference Love RF, Morris JG, Wesolowsky GO (1988) Facilities location: models and methods. North Holland, New York Love RF, Morris JG, Wesolowsky GO (1988) Facilities location: models and methods. North Holland, New York
go back to reference Ostresh LM Jr (1978) On the convergence of a class of iterative methods for solving the Weber location problem. Oper Res 26:597–609CrossRef Ostresh LM Jr (1978) On the convergence of a class of iterative methods for solving the Weber location problem. Oper Res 26:597–609CrossRef
go back to reference Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math Program 90:559–566CrossRef Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math Program 90:559–566CrossRef
go back to reference Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes. English Translation: on the Location of Industries. University of Chicago Press, Chicago, IL. Translation published in 1929 Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes. English Translation: on the Location of Industries. University of Chicago Press, Chicago, IL. Translation published in 1929
go back to reference Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J First Ser 43:355–386 Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J First Ser 43:355–386
go back to reference Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is minimum. Ann Oper Res 167:7–41 (English Translation of Weiszfeld (1937))CrossRef Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is minimum. Ann Oper Res 167:7–41 (English Translation of Weiszfeld (1937))CrossRef
go back to reference Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23 Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23
Metadata
Title
An improved algorithm for solving the Weber location problem
Author
Zvi Drezner
Publication date
20-05-2024
Publisher
Springer Berlin Heidelberg
Published in
4OR
Print ISSN: 1619-4500
Electronic ISSN: 1614-2411
DOI
https://doi.org/10.1007/s10288-024-00565-9

Premium Partners